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A Forward and Backward Compatible Framework for
Few-shot Class-incremental Pill Recognition

Jinghua Zhang, Li Liu, Kai Gao, Dewen Hu

Abstract—Automatic Pill Recognition (APR) systems are crucial for enhancing hospital efficiency, assisting visually impaired individuals, and
preventing cross-infection. However, most existing deep learning-based pill recognition systems can only perform classification on classes with
sufficient training data. In practice, the high cost of data annotation and the continuous increase in new pill classes necessitate the development
of a few-shot class-incremental pill recognition system. This paper introduces the first few-shot class-incremental pill recognition framework,
named Discriminative and Bidirectional Compatible Few-Shot Class-Incremental Learning (DBC-FSCIL). It encompasses forward-compatible and
backward-compatible learning components. In forward-compatible learning, we propose an innovative virtual class synthesis strategy and a
Center-Triplet (CT) loss to enhance discriminative feature learning. These virtual classes serve as placeholders in the feature space for future
class updates, providing diverse semantic knowledge for model training. For backward-compatible learning, we develop a strategy to synthesize
reliable pseudo-features of old classes using uncertainty quantification, facilitating Data Replay (DR) and Knowledge Distillation (KD). This
approach allows for the flexible synthesis of features and effectively reduces additional storage requirements for samples and models.
Additionally, we construct a new pill image dataset for FSCIL and assess various mainstream FSCIL methods, establishing new benchmarks. Our
experimental results demonstrate that our framework surpasses existing State-of-the-art (SOTA) methods. The code is available at
https://github.com/zhang-jinghua/DBC-FSCIL.

Index Terms—Automatic pill recognition, Class-incremental learning, Few-shot learning, Pill dataset, Computer vision.
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1 INTRODUCTION

Globally, unsafe medication practices and errors constitute
a primary source of injury and preventable harm within
healthcare systems, incurring an estimated annual cost of 42
billion USD [1]. These errors may occur at various stages of
the medication process. In response to this challenge, the World
Health Organization (WHO) has initiated “Medication Without
Harm” as the theme for its third Global Patient Safety Challenge,
aiming to collaborate with member states and professional
institutions to mitigate these issues. Against this backdrop, the
evolution of computer vision technology offers new avenues for
enhancing medication safety.

APR, accurately recognizing pills by their visual appearance,
is essential for ensuring patient safety and delivering effective
healthcare systems, as it reduces medication dispensing errors
and potential adverse drug events. APR has various potential
applications. From a safety perspective, various errors can
transpire at various stages of the pharmacological process.
For patient care, APR can enhance treatment effectiveness in
diverse situations such as disaster response, poison control
interventions, and supporting patient medication adherence. For
instance, poison control centers have seen increased calls for pill
identification, and automated systems can alleviate the burden
on experts. Additionally, consistent visual identification can aid
patient persistence in medication adherence, particularly when
switching between brand-name and generic drugs, as changes
in a pill’s appearance can influence a patient’s willingness to
continue therapy. In hospitals, it can strengthen the double-
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check process of medication dispensing by ensuring the visual
identification of the medication matches the prescription exactly,
effectively reducing the risk of dispensing incorrect medication
to patients. Moreover, APR can also contribute to advancing
remote diagnosis technologies and smart healthcare solutions.

In this context, developing an automatic prescription pill
recognition system is a crucial innovation to identify oral
pills from prescriptions accurately. Unlike the problem of pill
recognition in application scenarios such as pill factory [2] and
pill retrieval system [3], the prescription pill recognition system
needs to simultaneously recognize pills related to unlimited
classes and instances contained in one prescription. Although
some studies have been directed toward developing relevant
pill recognition systems, these systems are primarily based
on static models trained with large datasets. However, with
the introduction and evolution of pills, the classes of pills
are constantly increasing, and annotating a large number of
training samples to retrain recognition systems is costly. In
light of these challenges, Ling et al. [4] have crafted a pill
classification framework tailored for Few-shot Learning (FSL),
leveraging a combination of traditional image features and
metric learning. Nguyen et al. [5] introduced an incremental
multi-stream intermediate fusion framework aimed at the Class-
Incremental Learning (CIL) issue. However, a blank remains in
addressing the challenging but more practical few-shot class-
incremental pill recognition.

To summarize, while existing efforts have marked some
progress, pill recognition remains an underexploited field with
the following challenges:

• The lack of realistic datasets. Although some pill
datasets have been proposed [4, 6, 7], the pills in their
images are either manually separated, or these images
only contain a single object, as shown in Fig. 1 (b) and
(d). This deviates completely from the real application
scenarios where pills often adhere to each other, as
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enhancement remains unstudied

(d) Pill images from CURE dataset

(e) Pill images from our FCPill dataset

(b) Manually separated pills (c) Our pill images from hospitals

(a) Challenges in few-shot class-incremental pill recognition

Fig. 1: The main challenges of few-shot class-incremental pill recognition and images from related datasets. In (a), we summarized
a taxonomy of the difficulties of pill images and the design of a few-shot class-incremental pill recognition system. (b) provides the
pill images used in [6]. These pills are manually separated, which is against the practical scenario. (c) shows the images we collected
from the real application scenario in hospitals, and it can be found that the phenomenon of pill adhesion often occurs. (d) and (e)
show CURE and our FCPill dataset, respectively. Each column corresponds to one class. In (d), different textures on different sides
and diverse imaging conditions contribute to large intra-class variations. Conversely, (e) illustrates how pills from distinct classes
can appear similar, leading to small inter-class variations. In addition, (e) highlights cases of pill adhesion.

exemplified in Fig. 1(c). The practical system is expected
to be able to handle the recognition task related to
randomly placed pills. The lack of realistic pill image
datasets hinders the development and application of pill
recognition approaches.

• Large intra-class variations and small inter-class
variations. Variations generated by different factors,
such as randomly placed sides, illumination change,
occlusion, and noise, result in significant effects on the
pill appearance, causing large intra-class variations (e.g.,
examples shown in green and blue boxes of Fig. 1(d) and
(e)). Besides, since only a few forms are available during
the pill manufacturing process (as shown in yellow boxes
of Fig. 1(e), many pills of different classes are white and
round), small inter-class variations are common in pill
images.

• The lack of FSCIL ability. In pill recognition, most
deep learning approaches are static, relying heavily on
substantial data for predefined tasks. The emergence
of new pill classes requires frequent retraining and
consuming significant data, computational, and storage
resources. Thus, developing a dynamic algorithm that
can adapt to new pill classes with limited samples while
retaining existing knowledge is crucial. Pill recognition
uniquely challenges FSCIL with its large intra-class and
small inter-class variations. This issue escalates as more
classes are added, particularly when confusion between
new and old classes is intensified by the similarity among
numerous classes and the limited samples for new class
learning.

• The lack of discriminability. The current pill recognition

research has yet to develop a systematic and comprehen-
sive strategy to support discriminant feature learning to
solve the challenge of large intra-class and small inter-
class variations. This lack can affect the performance of
pill recognition systems.

Our study presents the DBC-FSCIL framework tailored
for few-shot class-incremental pill recognition in response to
the challenges outlined. This framework encompasses two
major learning strategies: forward-compatible learning during
the base session and backward-compatible learning during
incremental sessions. In the forward-compatible learning phase,
we innovatively synthesize virtual classes and apply the CT
loss function to enhance the model’s ability to recognize
new categories and ensure accurate recognition of previously
learned categories. The strategy of synthesizing virtual classes,
utilizing existing base classes to generate placeholders in
the feature space for future incremental classes, enriches the
diversity of the training set and provides additional semantic
information to the model. This aids in better distinguishing
between different feature patterns. The CT loss function
further optimizes the cohesion among similar samples and
the distinction between different classes, significantly boosting
the model’s discriminative power. For backward-compatible
learning, we adopt a strategy based on uncertainty quantification
to synthesize reliable pseudo-features of old classes, facilitating
DR and KD. This approach allows for the flexible synthesis of
any number of pseudo-features, effectively reducing the need
for additional storage of samples and models and ensuring the
model maintains high recognition accuracy for old categories
while learning new ones. Furthermore, to support in-depth
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research into FSCIL, we collect and construct a new pill image
dataset from real hospital environments, named FCPill. By
evaluating various mainstream FSCIL methods and our method
on FCPill and another public pill dataset, CURE, we establish
new benchmarks for FSCIL. Our DBC-FSCIL outperforms other
methods.

The key contributions of this work can be summarized as
follows:

• We introduce a novel discriminative and bidirectional
compatible FSCIL framework to perform pill recognition,
DBC-FSCIL. It consists of forward compatibility learning
based on virtual class generation and a novel metric
loss, and backward compatibility learning based on DR
and KD of pseudo-old class features. It shows superior
performance across multiple benchmark datasets.

• We propose a novel CT loss, which merges the Triplet
loss and Center loss, harnessing the full potential of
sample pairs for training. This approach enhances intra-
class compactness and inter-class discrimination.

• We develop an innovative KD strategy utilizing Pseudo
Feature Synthesis (PFS). It uses a limited number of
features from the previous session to synthesize pseudo-
features. It combines uncertainty quantization and model
prediction to select reliable pseudo-features for efficient
KD, which exhibits better flexibility and saves storage
space.

• We construct a new pill image dataset, FCPill, for FSCIL,
where the images are sampled from eight groups across
seven hospitals in five cities. This dataset contains 60 base
and 40 new classes, each with 600 images. In addition,
a series of mainstream FSCIL methods are tested on this
dataset and another public dataset, CURE, providing new
benchmarks for FSCIL.

The remainders of this paper are organized as follows: In
Sec. 2, we review the relevant basic knowledge and literature;
Sec. 3 introduce the collection and construction of our proposed
datasets; Sec. 4 introduces our proposed methods in detail; Sec. 5
gives dataset details and experimental results; The conclusion is
provided in Sec. 6.

2 RELATED WORK

2.1 Automatic Pill Recognition

There are some existing works [4, 5, 6, 7, 8, 9, 10, 11] focusing
on the development of pill recognition system. Most of these
research efforts utilize private datasets, although there are
instances where public datasets have been employed, notably
the CURE dataset [4] and the now-unavailable NIH dataset [12].
In the early stage, these systems predominantly relied on
feature engineering approaches [8, 9], as evidenced by [8],
which highlighted the efficacy of shape, color, size, and imprint
features in pill recognition. Since deep learning has shown
overwhelming advantages in many computer vision tasks, it
has become the dominant technology in the research of pill
recognition systems. The related studies primarily focus on the
object detection task and classification task. Object detection
methods can be categorized into one-stage frameworks [10, 11]
and two-stage frameworks [6, 7]. For example, Pornbunruang
et al. [10] utilized CenterNet, a one-stage method, for direct
localization and classification of pills. In contrast, Ou et
al. [6] implemented a two-stage approach, introducing an
enhanced feature pyramid network for localization preceding

classification. Recent classification studies [4, 5] relevant to our
work have surfaced. Ling et al. [4] developed a pill classification
framework for FSL, primarily utilizing traditional image features
combined with metric learning. Nguyen et al. [5] proposed an
incremental multi-stream intermediate fusion framework for
tackling the CIL problem. However, there remains to be a blank
in addressing the challenging but more practical few-shot class-
incremental pill recognition.

2.2 Few-shot Learning
The purpose of FSL is to design a machine learning algorithm
that can rapidly generalize to new tasks containing only a
few samples with supervised information based on previous
knowledge [13, 14]. Each new task usually includes a support
set and a query set, and the data in the two sets do not
intersect [15]. The support set contains a few labeled training
samples, which assist the algorithm based on prior knowledge
to make predictions on the query set. The data in the support
set is often described as N−way K−shot, which means that the
support set contains N classes, and each class has K labeled
samples. In recent years, plenty of studies have focused on
developing FSL algorithms. They can broadly be summarized
into optimization-based and metric learning-based methods [16].
Optimization-based methods train a model with data from
previous base classes and then fine-tune the classifier or the
whole model with data from the support set in the new
task [17]. Metric learning-based methods concentrate on learning
a robust backbone to generate high-quality and transferable
feature representations [18]. The first few-shot pill recognition
framework [4] adopts the Triplet loss to obtain discriminative
feature representations to perform the FSL task.

2.3 Class-incremental Learning
CIL aims to create algorithms that learn from new classes
sequentially while retaining prior knowledge, as highlighted
in [19, 20]. CIL typically unfolds over sessions, each with distinct
training and testing datasets. The learning shifts to the session
i, rendering the previous session’s training data inaccessible,
but testing includes datasets from all sessions. FSCIL can be
seen as a CIL challenge that emerges when confronted with a
constrained number of samples. CIL approaches fall into three
categories [19]: parameter-based [21, 22] focusing on preserving
key model parameters, distillation-based like LwF [23] which
introduced KD to CIL, and rehearsal-based [24, 25], which save
past data for training on new classes. iCaRL [26] combines
feature representation and classifier learning, using nearest
neighbor classifiers and distillation loss to prevent forgetting.

2.4 Few-shot Class-incremental Learning
FSCIL is a recent machine learning topic proposed in [27]. It aims
to design a machine learning algorithm that can continuously
learn knowledge from a sequence of new classes with only a
few labeled training samples while preserving the knowledge
learned from previous classes [27, 28]. In the FSCIL setting, the
data stream usually consists of a base session with sufficient
training data and a sequence of incremental sessions, whose
training datasets are in the form of N−way K−shot. Previous
session training datasets are unavailable once the learning
process goes into session i. In contrast, the testing data used
in session i consists of the testing datasets from all previous and
current sessions. Recently, quite a few works have focused on
developing the FSCIL algorithm. For instance, TOPIC [27] is the
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first algorithm specifically used to perform the FSCIL task. It
uses the neural gas network to preserve the topology of features
between the base and new classes to avoid forgetting [27].
CEC [29] adopts GAT to update the relationships between the
base and new prototypes, which can help the classifier find
better decision boundaries. FACT [19] first imported the idea of
forward compatibility to enhance the adaptability of the FSCIL
model for future incremental classes.

3 FCPILL DATASET

3.1 Data Collection

Existing pill datasets are categorized into single-object and
multi-object types, with the latter often manually separating
pills, which does not align with real-world applications. In
most hospitals, patients usually receive pill packets based on
prescriptions, typically containing multiple classes and instances
of pills that are often adhered or overlapped. This scenario is not
accurately represented in current datasets. To fill this gap, we
collected a substantial number of original pill packet images and
their corresponding electronic prescriptions from real hospitals.
Following approval from the relevant ethics committee, we
employed a device equipped with top and bottom cameras to
capture images of the pill packets, recording both the front and
back views. Ultimately, we gathered 473,148 original pill packet
images from eight groups across seven hospitals in five Chinese
cities. Images containing the same pill class were categorized
based on the prescriptions to facilitate dataset construction.

3.2 Data Annotation

After acquiring images of each pill class, we started to
extract individual pill objects. Given that most pill packet
images contain multiple pills, we first located and segmented
individual pills, followed by manual classification based on
pill templates. Considering the real scenarios, where pills
often adhere to each other, we primarily employed watershed
algorithms and dilation-erosion processes for segmentation. To
preserve complete pill information as much as possible, we
dilated the segmentation results to cover the entire object
area, thereby maintaining the challenge posed by adhesion.
After segmentation, trained human experts performed data
annotation, comparing pill templates to select the correct
individual pill images. After completing the preliminary
annotation, we followed the commonly used FSCIL benchmark
dataset, miniImageNet, to filter out classes with a minimum of
600 samples. This criterion led to the selection of 100 classes,
forming the foundation of our FCPill dataset.

3.3 Evaluation Protocol

After compiling the FCPill dataset comprising 100 classes, each
with 600 samples, we developed an evaluation protocol tailored
for FSCIL. Specifically, similar to miniImageNet, we partitioned
the dataset, allocating 300 images per class for training and the
remaining 300 for testing. After that, 60 classes were earmarked
as base classes, while the rest were categorized as incremental
classes. These incremental classes were further divided into 8
incremental sessions, each incorporating 5 classes. Within each
class of these sessions, 5 samples were randomly chosen to serve
as the training data, adhering to the 5-way 5-shot format. The
specific partition file can refer to our code.

4 PROPOSED METHODOLOGY

In this section, the problem setting of FSCIL is first introduced.
Subsequently, an overview of our proposed framework is
presented. This is followed by detailed descriptions of the
forward-compatible learning and the backward-compatible
learning within the framework.

4.1 Problem Setting
Assume {D0

train, · · · , Dn
train} and {D0

test, · · · , Dn
test} denote the

training and testing datasets in FSCIL sessions. The n means the
incremental session number in the current FSCIL task. D0

train

denotes the training dataset in the base session, which contains
abundant labeled training data. ∀ integer i ∈ [1, n], Di

train is
in form of N−way K−shot, which means the training dataset
in session i contains N classes and each class has K labeled
samples. Di

test denotes the testing dataset in session i. ∀ integer
i ∈ [0, n], Ci denotes the corresponding label space of Di

train

and Di
test. The relevant classes in different sessions have no

intersection, i.e., ∀ integer i, j ∈ [0, n] and i ̸= j, Ci∩Cj =
∅. When the training process comes into session i, only the
entire Di

train is available, while the entire training datasets of
previous sessions are no longer available. For the evaluation
at session i, the testing data consists of all the testing datasets
from current and previous sessions, i.e., D0

test ∪ · · · ∪ Di
test.

FSCIL encounters two major challenges: unreliable empirical risk
minimization due to limited supervised data, affecting model
generalization and increasing overfitting risks, and the stability-
plasticity dilemma, where continual addition of new classes risks
overwriting old knowledge, leading to catastrophic forgetting or
intransigence. Balancing model stability and plasticity remains a
central challenge [30].

4.2 Overall Framework
The concept of compatibility is a design characteristic considered
in software engineering [19]. Forward compatibility enables a
system to process inputs intended for future versions, whereas
backward compatibility facilitates interoperability with older
legacy systems [19]. To perform the few-shot class-incremental
pill recognition with the continuous learning of new classes
and the retention of old class knowledge, we propose a novel
bidirectional compatible FSCIL framework (DBC-FSCIL), as
depicted in Fig.2. DBC-FSCIL comprises two key components:
forward-compatible learning, covered in phases 1 and 2, and
backward-compatible learning in phase 3, as outlined in Fig.2.

In short, in Stage 1, the DBC-FSCIL framework generates
virtual classes using existing pill images. These virtual classes
are combined with the real base classes for training the
backbone, endowing its forward-compatible capability. This
enables efficient feature extraction for future incremental classes,
allowing the model to adapt to new classification tasks
with limited samples while low interference with previous
classification tasks. Considering the large intra-class and small
inter-class variations in pill images, we propose a novel metric
loss function to facilitate learning more discriminative features
by the backbone. Stage 2 focuses on further fine-tuning the
real classes in the base session after the weight initialization,
enhancing its adaptability for the classification in the base
session. Stage 3 aims to endow the model with backward
compatibility during the incremental learning phase. This is
achieved by employing uncertainty quantification and model
predictions to synthesize and select reliable pseudo-features of
old classes. These pseudo-features are then integrated into the
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incremental learning process through DR and KD strategies,
thereby effectively preserving previous knowledge.
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Fig. 2: The DBC-FSCIL Framework for Pill Recognition: Stage 1
focuses on the virtual class generation and forward-compatible
learning; Stage 2 aims at fine-tuning the model for base session
classification; Stage 3 is dedicated to the uncertainty-guided
synthesis of pseudo old class features for KD, ensuring backward
compatibility in the incremental learning process.

4.3 Forward Compatibility Learning

Many FSCIL algorithms adopt a strategy of freezing the
backbone after base session training to mitigate overfitting and
catastrophic forgetting in the incremental learning process. They
then integrate the frozen backbone with the Nearest Class Mean
(NCM) classifier to perform FSCIL. This strategy surpasses many
other methods [31]. Specifically, in the base training phase,
Cross-entropy (CE) loss is prevalently utilized to initialize the
backbone. The total classification loss is expressed as:

Lcls (ϕ;x, y) = Lce (ϕ (x) , y) , (1)

where Lce (·) denotes the CE loss, x represents the sample, y
is the corresponding label, and the model can be decomposed
into the backbone and classifier: ϕ(x) = WT g(x), with ϕ(x) ∈
R|C

0|×1, g(x) ∈ Rd×1, and W ∈ Rd×|C0|. After the base training,
the backbone is frozen. The prototypes in the NCM classifier are
generated by averaging the features of each class, formulated
as W = {w0

1,w
0
2, · · · ,w0

|C0|} ∪ · · · ∪ {wi
1, · · · ,wi

|Ci|}. During
inference, the features derived from the test sample are utilized
to compute similarity with each prototype in the NCM classifier,
typically employing cosine similarity. The classification is then
based on the prototype most similar to the test sample.

In the base session, despite the availability of sufficient
training samples for initializing the backbone, the robustness
and generalizability of the backbone, primarily trained by the CE
loss for classification, remain ambiguous for unseen incremental
classes [32]. Moreover, unlike other natural images, pill images
exhibit the challenge of large intra-class and small inter-class
variations, exacerbating the issue of poor generalization. To
address this challenge, we propose a strategy that involves
optimizing the loss function to promote the learning of
discriminative features and synthesizing virtual categories to
enhance the forward compatibility of the model.

4.3.1 Center-Triplet Loss

The features learned by CE loss often lack discriminability,
primarily because the core objective of CE loss is to delineate
decision boundaries between different classes [33]. Studies [32,
34] have shown that due to the poor class margins, it
exhibits poor generalization performance, potentially rendering
it unsuitable for FSCIL. Considering that the FSCIL model
needs to continuously adapt to new classes, if the prototypes
are sufficiently distant from each other and the features of
the same class are closely clustered around their prototype, it
facilitates better support for FSCIL. In many FSL studies [4, 35,
36], triplet loss is widely used to learn discriminative feature
representations. However, it cannot consider the inter-distance
within one class [33], and the triplet mining significantly affects
the training process.

Specifically, for ∀ (xa,xp,xn) ∈ T , the optimization purpose
of triplet loss is

∥g (xa)− g (xp)∥+m < ∥g (xa)− g (xn)∥, (2)

where T denotes the set of all the possible triplets of training
samples. Each triplet consists of an anchor sample xa, a positive
sample xp with the same label as xa, and a negative sample
xn from another class. m is the margin value. ∥ · ∥ denotes
the calculation of Euclidean distance. Based on the optimization
purpose in Eq. 3, the Triplet loss can be formulated as follows:

Lt (g;x) = max(0,m+ ∥g (xa)− g (xp)∥ − ∥g (xa)− g (xn)∥).
(3)

It’s worth noting that not all the triplets in T can promote
model optimization. Most triplets in T belong to the easy triplets
that satisfy Eq. 3 and cannot contribute to the training process.
Only semi-hard and hard triplets in T facilitate model progress.
However, extremely hard triplets can cause model collapse [37].
The effectiveness of triplet mining is crucial, but some valuable
triplets are often overlooked [33]. For example, a triplet A with
positive pair distance b and negative pair distance a is considered
easy and ineffective if the margin in Triplet loss, m, is less
than |b− a|. Similarly, a triplet B with distances b + n and
a + n (where n is a positive number) remains ineffective. This
scenario shows that Triplet loss inadequately constrains intra-
class compactness, leading to the neglect of triplets that could be
beneficial, suggesting the need for better utilization of potential
triplets to improve intra-class compactness.

To overcome Triplet loss’s limitations, we propose the
CT loss, combining Center loss concepts to boost intra-class
compactness. It aims at distinct representation learning by
anchoring a class and minimizing the distance between its
samples and center, less than the distance to the nearest different
class center. The CT loss is mathematically expressed as:

Lct (g;x) = max(0,m+ ∥g (x)− cy∥ −min
j ̸=y

∥cy − cj∥). (4)

Here, the triplet (x, cy, cj) includes a sample x, its class center
cy , and the nearest different class center cj . The loss updates the
backbone to ensure the distance between the sample’s feature
and its center cy is less than the distance to cy by a margin m.
Fig. 3 shows the details of related losses. The joint training uses
both CE loss and CT loss, formulated as:

Ltotal = Lcls + λLct, (5)

where λ balances the CT and classification losses.
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(b) Triplet loss

(d) Center-triplet loss(c) Center loss

(a) Cross-entropy loss

Fig. 3: The illustrations of related metric losses. (a) CE loss aims
to learn the decision boundary; (b) Triplet loss seeks to constrain
the distance between features of the same class to be less than
the distance between different classes by a predefined margin;
(c) Center loss encourages the intra-class compactness; (d) Our
proposed CT loss further promote the intra-class compactness
and inter-class separability by directly considering the distance
between different class centers.

4.3.2 Virtual Class Generation

In addition to the development of CT loss for enhanced
discriminative feature learning, our approach during the base
training is focused on establishing forward compatibility. Similar
to existing works [19, 38, 39], during the base training, we
synthesize various virtual classes and combine them with
base classes to train the backbone, ensuring its generalization
capability in incremental sessions. These virtual classes play
two crucial roles in achieving forward compatibility: they act as
placeholders in the feature space for future class updates and
serve as sources of diverse semantic knowledge, guiding the
model to engage in extensive learning across various semantics.

Specifically, due to the significant differences between pill
images and natural images, the methods of synthesizing
virtual classes in existing forward compatibility studies are
not able to accurately emulate real pill classes. By analyzing
the characteristics of pill images, we observed that pills have
structured shapes, such as circular, oval, or capsule forms,
and exhibit uniform color, fixed sizes, and consistent textures
within each class. Leveraging these characteristics, we develop
a specialized approach to synthesize virtual pill classes. This
involves applying random color and size transformations to
pill samples in the base session, thereby generating realistic
virtual classes. The generation process can be expressed as
(xrv, yrv) = F (x, y), where (xrv, yrv) denotes the image-
label pair from the union of real and virtual dataset, and F
denotes the transformation function. This strategy doubles the
label space and ensures the virtual classes closely resemble
actual pill classes. The union of real and virtual classes is used
to train the backbone to facilitate forward compatibility and
generalization capability. Following the integration of virtual
classes, the training loss functions for the backbone can be
articulated as follows:

Lcls (ϕ;xrv, yrv,F) = Lce (ϕ (xrv) , yrv) ,

Lct (f ;xrv) = max(0,m+ ∥f (xrv)− cyrv
∥ − min

j ̸=yrv

∥cyrv
− cj∥),

Ltotal = Lcls + λLct.
(6)

4.4 Backward Compatibility Learning

In our DBC-FSCIL framework, backward-compatible learning
primarily aims to efficiently retain previous knowledge while
learning new knowledge, achieved through DR and KD.
Currently, although some FSCIL methods [40, 41] balance the
learning of new and old knowledge by employing raw DR
and KD during the learning process of new sessions, they
typically require storing samples from previous classes and
face the challenge of insufficient comprehensive retention of
old knowledge due to limited available samples. Specifically,
existing methods encounter several challenges: 1) Limited
samples in incremental sessions may hinder a comprehensive
review of knowledge; 2) As the number of classes increases,
so does the demand for storage space; 3) Storing raw samples
introduces additional privacy risks; 4) KD necessitates extra
storage for models trained in previous sessions. Our novel
strategy addresses these challenges by merging DR and KD with
PFS, enhancing backward compatibility, and reducing storage
demands.

4.4.1 Pseudo Feature Synthesis

Unlike existing methods, we train a robust backbone in the
base session and keep its feature extractor frozen during
incremental sessions, training only the fully connected layers to
maintain generalization capabilities and forward compatibility.
We consider using features extracted by this frozen feature
extractor for DR and KD, aiming to reduce storage space
requirements and minimize privacy risks. However, due to the
few-shot condition, relying solely on these features might not
be sufficient for a comprehensive knowledge review. Therefore,
we propose a strategy that utilizes features extracted from
existing classes combined with uncertainty quantification and
model predictions to synthesize and select reliable pseudo-
features, thus overcoming the limitations imposed by the few-
shot samples. The details are showcased in Alg. 1.

In Alg. 1, information entropy, also called Shannon entropy,
is a well-defined measurement for uncertainty, which can be
defined as follows:

H(fv) = −
|C|∑
c=1

ψi(fv) logψi(fv), (7)

where |C| denotes the total number of classes in session i, ψi(fv)
represents the probability. High entropy denotes low confidence
and vice versa. Our PFS approach allows the synthesis of
a specified number Q of reliable pseudo-features for each
class. This strategy conserves sample storage space, mitigates
privacy concerns, and facilitates the simulation of more diverse
features. Consequently, this ensures the comprehensive review of
previous knowledge during DR and enhances the preservation
of previous knowledge in the KD process.

4.4.2 Data Reply and Knowledge Distillation

Following the synthesis of reliable pseudo-features from
previous sessions, our DBC-FSCIL framework employs two
strategies to ensure a balanced integration of old and new
knowledge. Initially, we utilize the pseudo-features representing
old categories for DR. This approach ensures that while the
fully connected layers of the model are learning features of new
classes in session t, they are also engaged in learning from the
pseudo-features of old classes, thereby maintaining a balance in
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Algorithm 1: Pseudo-feature Synthesis for Session i

Input: Training dataset Di
train, trained model ϕi (with

feature extractor φi and fully connected layers ψi),
number of features P to be stored per class,
number of pseudo-features Q to synthesize per
class.

Output: Set of synthesized pseudo-features S.
Initialize an empty set S for storing pseudo-features.
foreach class c ∈ Di

train do
Extract features {fci}

Nc
i=1 for all Nc samples in class c

using φi.
Compute mean feature µc =

1
Nc

∑Nc

i=1 fci .
Store P randomly selected features and mean feature
µc in a memory bank Mc.

end
foreach class c ∈ Di

train do
Set countc = 0.
while countc < Q do

Select a random feature vector f from Mc.
Generate a random scalar α ∈ (0, 1).
Synthesize pseudo-feature fv = αf + (1− α)µc.
Predict class label of fv using ψi(fv) and compute

information entropy H(fv).
if ψi(fv) predicts class c and H(fv) < threshold then

Append fv to S.
Increment countc by 1.

end
end

end

knowledge acquisition across old and new classes. This process
is mathematically represented as:

Lcls (ψt; frv, yrv) = Lce (ψt (frv) , yrv) , (8)

where ψt represents the fully connected layers, frv denotes the
union of features extracted from the current session and pseudo-
features of previous sessions, and yrv is the corresponding label.
In addition to the DR, we have incorporated a KD approach
in our framework. This technique facilitates the transfer of
knowledge learned from old to new models. The distillation
process is mathematically represented using the Kullback-
Leibler (KL) divergence, a measure of how one probability
distribution diverges from a second, expected probability
distribution:

Ldistill (ψt, ψt−1; frv) = KL

(
ψ (frv)

T
,
ψt−1 (frv)

T

)
(9)

where T is the temperature parameter. The KL divergence
in this context quantifies the difference between the softened
probability distributions of the teacher and student models. The
joint training loss in incremental sessions can be formulated as
follows:

Ltotal = Lcls + βLdistill, (10)

where β balances the classification and KD losses.
The flexibility in the number of synthesized pseudo-features

further enhances the efficiency of both DR and KD. Moreover,
as our framework utilizes a consistent feature extractor across
different sessions, it necessitates only the retention of weights
in the fully connected layers to assist in the KD process. This
significantly reduces the memory space required for model
storage. Our method offers an efficient solution for the effective

amalgamation of old and new knowledge in FSCIL scenarios.

5 EXPERIMENTS

5.1 Datasets and Protocols
Our DBC-FSCIL framework is evaluated on our proposed FCPill
dataset and the public CURE pill dataset [4].

mCURE: In addition to our proposed FCPill dataset, we
evaluate our framework on CURE [4], a public pill image dataset
originally proposed for FSL. CURE contains 1873 images of
196 classes, and each class has approximately 45 samples. To
make it fit the setting of FSCIL, we follow the similar splits as
miniImageNet in [27] to sample 171 classes to create the mCURE
dataset, where 171 classes are divided into 91 base classes and
80 new classes. These new classes are further divided into eight
incremental sessions, and the training data in each session is in
the form of 10-way 5-shot.

To comprehensively evaluate our DBC-FSCIL framework,
we employed three metrics: 1) The accuracy values obtained
on every session; (2) The Performance Drop (PD) rate, which
measures the absolute decline in accuracy from the base to the
final session; (3) The Average Accuracy (AA) of all sessions.

5.2 Implementation Details
Model Configurations: In most FSCIL studies, ResNet18 is
frequently utilized as the backbone. Our research also employs
ResNet18 as the backbone for the pill datasets. A distinctive
aspect of our approach is the addition of a fully connected layer
at the end of ResNet18 to enhance backward-compatible training
during the incremental learning stage. During the training
stage, the model is optimized using SGD with a learning rate
of 0.1, momentum of 0.9, and weight decay of 0.0005. After
completing the base session training, we freeze all parameters
except those in fully connected layers, which are exclusively
trained during incremental sessions. Classification is performed
using the softmax function. Our framework is implemented in
PyTorch 2.1 and Python 3.9, and trained on the Nvidia Tesla
V100 GPU.

Training Details: In the experiment for pill datasets, the train-
ing framework is divided into three stages: forward-compatible
training in the base session, fine-tuning for classification in the
base session, and backward-compatible training in incremental
sessions. For forward-compatible training, we set the epoch
number to 100, CT loss weights to 0.05 (for FCPill) and 0.1 (for
mCURE), and margin values to 1 (for FCPill) and 2 (for mCURE).
The fine-tuning phase involves 50 epochs with 5 (for FCPill)
and 4 (for mCURE) random stored features per class. In the
backward-compatible training phase, we set the epoch number
to 50, synthesize 10 (for FCPill) and 12 (for mCURE) pseudo-
features per class, with KD loss weights of 0.4 (for FCPill) and
0.6 (for mCURE) and a distillation temperature of 3 (for FCPill)
and 5 (for mCURE).

5.3 Comparison with Other Methods
To fully demonstrate the performance of our method, we
conduct performance comparisons on our proposed FCPill and
the public mCURE with several representative SOTA methods.
These include compatibility methods such as FACT [19],
ALICE [38], and SAVC [39], as well as non-compatibility
methods like CEC [29], LIMIT [42], SSFE-Net [43], and
BiDistFSCIL [44].

Results on FCPill: Fig. 4 and Tab. 1 show that our DBC-
FSCIL framework consistently delivers the best performance in
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all sessions on the FCPill dataset. In the base session, it achieves
a 96.38% accuracy, outperforming the leading non-compatibility
method, BiDistFSCIL, by 1.67%. Against other compatibility
methods, our framework surpasses FACT by 0.16%, ALICE
by 7.18%, and SAVC by 1.76%. This success indicates that
our forward-compatible strategy effectively enhances class
discriminability through virtual class generation and CT loss.
Compared to existing compatibility methods, our framework
not only adopts forward compatibility but also focuses on
sustaining backward compatibility during incremental learning.
In the final session, our method achieves the best accu-
racy of 89.59%, and it exceeds forward-compatible methods,
including FACT by 4.86%, ALICE by 14.68%, and SAVC
by 7.09%. Moreover, it surpasses non-compatibility methods
in final session performance. Regarding AA, our framework
substantially surpasses the best-performing compatibility and
non-compatibility methods by 2.97% and 2.00%, respectively.
Although our PD rate stands at 6.79%, which is the second-best
performance, it shows the strongest resistance to catastrophic
forgetting among compatibility methods. It’s important to note
that, as some studies [38] suggest, PD is not an exhaustive metric
for evaluating resistance to forgetting.

0 1 2 3 4 5 6 7 8

75

80

85

90

95

100

FCPill

Session

A
cc

u
ra

cy
(%

)

0 1 2 3 4 5 6 7 8

40

50

60

70

80

90

100

mCURE

Session

A
cc

u
ra

cy
(%

)

CEC LIMIT SSFE

BiDistFSCIL FACT ALICE SAVC

DBC-FSCIL

Fig. 4: Comparison with SOTA methods on FCPill and mCURE.
Our method, DBC-FSCIL, comprehensively surpasses other
methods.

Results on mCURE: Fig. 4 and Tab. 1 illustrate that our
method exhibits excellent performance across all sessions on the
mCURE dataset. In the base session, it achieves a notable 93.85%
accuracy, outperforming most non-compatibility methods and
essentially on par with the best-performing method, SSFE-
Net. Compared to other compatibility methods, our approach
excels FACT by 9.85%, ALICE by 42.75%, and SAVC by
4.22%, demonstrating the efficacy of our forward-compatibility
strategy. Thanks to our backward-compatibility approach, our
method significantly outshines forward-compatibility focused
methods in the final session, surpassing FACT by 20.84%, ALICE
by 40.93% and SAVC by 11.01%. Moreover, it outperforms
non-compatibility methods in the final session, exceeding
CEC by 19.75%, LIMIT by 19.84%, SSFE-Net by 5.44%
and BiDistFSCIL by 35.93%. Regarding AA, our framework
substantially surpasses the best-performing compatibility and
non-compatibility methods by 8.59% and 3.15%, respectively.
With a PD rate of only 15.69%, our method demonstrates
effective resistance to forgetting among compatibility methods.
This indicates that our approach extensively surpasses existing
advanced methods on the mCURE dataset.

5.4 Ablation Studies
To substantiate the significance of our proposed components,
we conducted ablation studies focusing on the key aspects of
our method, which consists of forward-compatible learning and
backward-compatible learning. Forward-compatible learning
encompasses virtual class generation and CT loss, while
backward-compatible learning includes DR and KD based on
PFS and uncertainty-guided selection. In Tab. 2, we report the
results starting with the CE loss-based fine-tuning as the baseline
and progressively integrating virtual class generation, CT loss,
raw PFS, and PFS with uncertainty quantification.

On the FCPill dataset, compared to the baseline, the
introduction of virtual class generation resulted in a 1.17%
improvement in the base session and a 10.46% improvement in
the final incremental session. The inclusion of CT loss further
led to a 1.21% improvement in AA. The raw PFS enhanced the
performance by 14.72% in AA. The integration of uncertainty-
guided selection finally increased performance to 92.01%, a
0.79% improvement, in AA.

A similar trend was observed on the mCURE dataset. Virtual
class generation contributed to a 6.53% improvement in the base
session and a 3.83% improvement in the last incremental session.
The addition of CT loss led to further improvements of 2.85%
and 6.75% in the base and final sessions, respectively. The raw
PFS increased the AA performance by 19.32%. Although the
final integration of uncertainty-guided selection did not improve
performance on the mCURE, this indicates that the unfiltered
pseudo-features were already capable of adequately simulating
real features. Integrating the uncertainty filtering module can
prevent additional risks due to poor synthetic pseudo-features.

To investigate the contributions of each component of our
model in few-shot incremental pill recognition, we display the
confusion matrices generated by models in the last incremental
session of our ablation studies on the FCPill and mCURE datasets
in Fig. 5. A bright diagonal against a dim background indicates
higher classification accuracy. Our observations reveal that while
the basic fine-tuning method provides relatively clear diagonals
for base classes, its effectiveness on new classes is limited.
However, with the integration of different components, the
model exhibits a noticeable improvement in performance for
both new and old classes. Particularly, the implementation of
forward-compatible learning significantly enhances performance
for base classes while also improving results for incremental
classes. Further incorporating the backward-compatible strategy
markedly boosts performance for incremental classes. This
demonstrates that our method effectively adapts to new classes
and accurately recognizes old classes, avoiding confusion in
established decision boundaries.

5.5 Further Analysis
5.5.1 Effectiveness of Virtual Class Generation
To assess the efficacy of our proposed method for generating
virtual classes, we present comparative performance results for
both the base class session and the last incremental session
on the FCPill and mCURE datasets, as shown in Fig. 6.
We examine scenarios including no virtual class generation,
one-fold virtual class generation, and two-fold virtual class
generation. On the FCPill dataset, the one-fold virtual class
generation strategy demonstrates superior performance over the
no virtual class generation scenario, with improvements of 0.39%
and 1.25% in the base class session and the last incremental
session, respectively. This strategy also outperforms the two-
fold virtual class generation, achieving improvements of 0.4%
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TABLE 1: Comparison results of our DBC-FSCIL against other SOTA methods on FCPill and mCURE. Comp. shows whether the
method is compatible. (In %).

Dataset Comp. Method Venue
Session ID

AA↑ PD↓
0 1 2 3 4 5 6 7 8

FCPill

No

CEC [29] CVPR 21 93.71 91.63 90.08 90.22 89.10 88.67 89.22 89.34 88.11 90.01 5.59
LIMIT [42] TPAMI 22 93.11 90.07 88.65 88.54 87.18 86.68 87.33 87.39 86.01 88.33 7.10

SSFE-Net [43] WACV 23 94.49 93.26 90.61 90.53 88.63 87.72 88.40 88.54 87.29 89.94 7.20
BiDistFSCIL[44] CVPR 23 94.71 91.74 89.61 88.54 87.73 87.36 87.90 87.62 86.00 89.02 8.71

Yes

FACT [19] CVPR 22 96.22 92.84 89.98 89.31 87.80 86.72 87.09 86.67 84.73 89.04 11.49
ALICE [38] ECCV 22 89.20 85.84 83.40 81.46 78.73 77.48 76.76 76.13 74.91 80.43 14.29
SAVC [39] CVPR 23 94.62 92.57 90.02 89.28 87.20 85.95 85.04 84.14 82.50 87.92 12.12

DBC-FSCIL - 96.38 94.54 92.74 92.03 91.04 90.41 90.68 90.66 89.59 92.01 6.79

mCURE

No

CEC [29] CVPR 21 82.26 79.52 73.65 70.92 67.52 66.35 62.36 59.24 58.40 68.91 23.86
LIMIT [42] TPAMI 22 82.26 79.33 74.35 71.40 68.44 66.79 62.87 59.42 58.31 69.24 23.95

SSFE-Net [43] WACV 23 93.41 90.22 86.24 85.46 80.48 80.27 76.53 72.95 72.71 82.03 20.70
BiDistFSCIL[44] CVPR 23 67.36 63.66 58.69 54.71 51.22 48.19 46.23 42.70 42.22 52.78 25.14

Yes

FACT [19] CVPR 22 84.00 78.24 73.39 71.20 68.67 64.90 62.68 58.39 57.31 68.75 26.69
ALICE [38] ECCV 22 51.10 49.21 46.04 44.71 42.21 40.46 39.74 38.23 37.22 43.21 13.88
SAVC [39] CVPR 23 89.63 85.57 81.04 79.28 75.04 72.72 71.26 67.64 67.14 76.59 22.49

DBC-FSCIL - 93.85 91.67 88.15 87.48 84.00 83.63 80.81 78.86 78.15 85.18 15.69

TABLE 2: Ablation studies on FCPill and mCURE. VCG, CT, PFS, and US denote virtual class generation, CT loss, PFS, and
uncertainty-guided selection, respectively. (In %).

Dataset VCG CT loss PFS US
Session ID

AA↑ PD↓
0 1 2 3 4 5 6 7 8

FCPill

95.01 86.87 80.04 74.33 69.58 65.50 58.18 54.27 51.52 70.59 43.49
✓ 96.18 88.65 81.06 77.53 73.98 69.83 64.83 63.55 61.98 75.29 34.20
✓ ✓ 96.38 90.05 83.62 79.98 75.24 71.15 67.32 63.70 61.11 76.50 35.28
✓ ✓ ✓ 96.38 93.80 91.71 91.19 89.89 89.45 89.95 89.83 88.76 91.22 7.62
✓ ✓ ✓ ✓ 96.38 94.54 92.74 92.03 91.04 90.41 90.68 90.66 89.59 92.01 6.79

mCURE

84.47 72.57 64.35 58.64 53.52 48.76 46.10 40.18 37.66 56.25 46.82
✓ 91.00 77.68 64.71 60.86 55.04 51.29 45.87 42.52 41.49 58.94 49.50
✓ ✓ 93.85 82.47 74.83 68.93 62.73 57.51 54.33 49.86 48.24 65.86 45.61
✓ ✓ ✓ 93.85 91.67 88.15 87.48 84.00 83.63 80.81 78.86 78.15 85.18 15.69
✓ ✓ ✓ ✓ 93.85 91.67 88.15 87.48 84.00 83.63 80.81 78.86 78.15 85.18 15.69

and 2.56% in the base class session and the last incremental
session, respectively. Similarly, on the mCURE dataset, the one-
fold virtual class generation approach shows enhanced results
compared to the absence of virtual class generation, with
performance boosts of 2.5% and 3.96% in the base class session
and the last incremental session, respectively, and surpasses the
two-fold virtual class generation with an improvement of 2.94%
in the last incremental session.

5.5.2 Separation Capability of Center-Triplet Loss

To verify the effectiveness of our CT loss in enhancing the
separation of new and old classes, we visualized the feature
space of the FCPill and mCURE datasets in the last session
using t-SNE, as depicted in Fig. 7. We randomly selected
6 base classes and 4 incremental classes, and compared the
separation degree in the feature space under CE loss, Triplet
Loss, Center Loss, and our proposed CT loss. The observations
indicate that the performance of CE loss is the least effective;
while Triplet Loss improves inter-class separation, it fails to

constrain intra-class compactness. Although Center Loss can
constrain intra-class compactness, it offers limited improvement
in inter-class separation. Our proposed CT loss demonstrates the
most significant effect in inter-class separation and intra-class
compactness.

5.5.3 Analysis of Pseudo Feature Synthesis

To validate the effectiveness of our proposed PFS method, we
visualized the feature space of the FCPill and mCURE datasets
in the final session using t-SNE, as shown in Fig. 9. We randomly
selected some classes and displayed the distribution of real
features and synthesized pseudo-features in the feature space.
The observations reveal that the synthesized pseudo-features
closely cluster with the real sample features on both FCPill
and mCURE datasets. This demonstrates that the synthesized
pseudo-features effectively emulate the features generated by
real samples, thereby aiding in the process of backward-
compatible learning.



PREPARATION FOR SUBMITTING TO IEEE TPAMI 10

(a) FT on FCPill (b) FCL on FCPill (c) BCL on FCPill

(d) FT on mCURE (e) FCL on mCURE (f) BCL on mCURE

Fig. 5: Comparison of the confusion matrices of different
ablation methods on FCPill and mCURE datasets. FT, FCL, and
BCL denote fine-tuning, forward-compatible learning (including
VCG and CT loss), and back-compatible learning (including PFS
and US).

(a) Accuracy on the base session (b) Accuracy on the final session

Fig. 6: Influence of virtual class generation methods. One-fold
virtual class generation obtains the best performance.

(a) C. loss on FCPill (b) T. loss on FCPill (c) CT loss on FCPill

(d) C. loss on mCURE (e) T. loss on mCURE (f) CT loss on mCURE

Fig. 7: The t-SNE visualization of the features learned by
different loss functions on FCPill and mCURE datasets. Classes
0-6 represent the base classes, while classes 7-10 represent the
incremental classes. Our CT loss gets the best class separation
degree.

(a) Features on FCPill (b) Features on mCURE

Fig. 8: The t-SNE visualization of the real and pseudo features
on FCPill and mCURE datasets. The round and cross marks
represent real and false features, respectively. Our PFS method
effectively mimics the real features.

5.5.4 Impact of Hyper-parameter
In our DBC-FSCIL framework, the hyper-parameters for
forward-compatible learning include the coefficient λ, as defined
in Eq. 5, which determines the impact of CT loss, and the
margin m in CT loss, as detailed in Eq. 4. For backward-
compatible learning, the hyper-parameters include P and Q
in Alg. 1, representing the number of real features stored per
class and the number of pseudo-features synthesized per class,
respectively, along with the temperature T and the coefficient
β related to KD loss, as outlined in Eq. 9 and Eq. 10. To
thoroughly evaluate the Influence of these hyper-parameters on
model performance, we present the results of the final session on
the FCPill and mCURE datasets with varying hyper-parameters
in Fig. 9. It is observed that the optimal hyper-parameters
for achieving the best performance on the FCPill dataset are
{λ,m,P,Q, T, β} = {0.05, 1, 5, 10, 3, 0.4}. Similarly, for the
mCURE dataset, the hyper-parameters yielding the highest
performance are {λ,m,P,Q, T, β} = {0.1, 2, 4, 12, 5, 0.6}.

(a) CT loss on FCPill (b) PFS on FCPill (c) KD on FCPill

(d) CT loss on mCURE (e) PFS on mCURE (f) KD on mCURE

Fig. 9: Hyper-parameter influence on the FCPill and mCURE
datasets.

6 CONCLUSION

In this paper, we introduce the first FSCIL framework for
pill recognition, named DBC-FSCIL. This framework incorpo-
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rates forward-compatible and backward-compatible learning
components. For forward-compatible learning, we propose an
innovative virtual class synthesis strategy and a CT loss to
enhance discriminative feature learning. These virtual classes
act as placeholders in the feature space for future class
updates, providing diverse semantic knowledge for model
training. Regarding backward-compatible learning, we develop
a strategy to synthesize reliable pseudo-features of old classes
using uncertainty quantification, facilitating DR and KD. This
approach enables flexible feature synthesis and significantly
reduces the additional storage requirements for samples and
models. Furthermore, we have constructed a new pill image
dataset for FSCIL and assessed various mainstream FSCIL
methods, establishing new benchmarks. Our experimental
results demonstrate that our framework surpasses existing SOTA
methods.
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