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A Forward and Backward Compatible Framework
for Few-shot Class-incremental Pill Recognition

Abstract—Automatic Pill Recognition (APR) systems are cru-
cial for enhancing hospital efficiency, assisting visually impaired
individuals, and preventing cross-infection. However, most ex-
isting deep learning-based pill recognition systems can only
perform classification on classes with sufficient training data. In
practice, the high cost of data annotation and the continuous
increase in new pill classes necessitate the development of a
few-shot class-incremental pill recognition system. This paper
introduces the first few-shot class-incremental pill recognition
framework, named Discriminative and Bidirectional Compatible
Few-Shot Class-Incremental Learning (DBC-FSCIL). It encom-
passes forward-compatible and backward-compatible learning
components. In forward-compatible learning, we propose an
innovative virtual class synthesis strategy and a Center-Triplet
(CT) loss to enhance discriminative feature learning. These
virtual classes serve as placeholders in the feature space for
future class updates, providing diverse semantic knowledge for
model training. For backward-compatible learning, we develop
a strategy to synthesize reliable pseudo-features of old classes
using uncertainty quantification, facilitating Data Replay (DR)
and Knowledge Distillation (KD). This approach allows for the
flexible synthesis of features and effectively reduces additional
storage requirements for samples and models. Additionally, we
construct a new pill image dataset for FSCIL and assess various
mainstream FSCIL methods, establishing new benchmarks. Our
experimental results demonstrate that our framework surpasses
existing State-of-the-art (SOTA) methods. The code is available
after double-anonymous review.

Index Terms—Automatic pill recognition, Class-incremental
learning, Few-shot learning, Pill dataset, Computer vision.

I. INTRODUCTION

Globally, unsafe medication practices and errors constitute
a primary source of injury and preventable harm within
healthcare systems, incurring an estimated annual cost of 42
billion USD [1]. These errors may occur at various stages
of the medication process. In response to this challenge, the
World Health Organization (WHO) has initiated “Medication
Without Harm” as the theme for its third Global Patient
Safety Challenge, aiming to collaborate with member states
and professional institutions to mitigate these issues. Against
this backdrop, the evolution of computer vision technology
offers new avenues for enhancing medication safety.

APR, accurately recognizing pills by their visual appear-
ance, is essential for ensuring patient safety and delivering ef-
fective healthcare systems, as it reduces medication dispensing
errors and potential adverse drug events. APR has various po-
tential applications. From a safety perspective, various errors
can transpire at various stages of the pharmacological process.
For patient care, APR can enhance treatment effectiveness in
diverse situations such as disaster response, poison control
interventions, and supporting patient medication adherence.
For instance, poison control centers have seen increased calls
for pill identification, and automated systems can alleviate the

burden on experts. Additionally, consistent visual identification
can aid patient persistence in medication adherence, particu-
larly when switching between brand-name and generic drugs,
as changes in a pill’s appearance can influence a patient’s
willingness to continue therapy. In hospitals, it can strengthen
the double-check process of medication dispensing by ensur-
ing the visual identification of the medication matches the
prescription exactly, effectively reducing the risk of dispensing
incorrect medication to patients. Moreover, APR can also
contribute to advancing remote diagnosis technologies and
smart healthcare solutions.

In this context, developing an automatic prescription pill
recognition system is a crucial innovation to identify oral
pills from prescriptions accurately. Unlike the problem of pill
recognition in application scenarios such as pill factory [2]
and pill retrieval system [3], the prescription pill recognition
system needs to simultaneously recognize pills related to
unlimited classes and instances contained in one prescription.
Although some studies have been directed toward developing
relevant pill recognition systems, these systems are primarily
based on static models trained with large datasets. However,
with the introduction and evolution of pills, the classes of
pills are constantly increasing, and annotating a large number
of training samples to retrain recognition systems is costly.
In light of these challenges, Ling et al. [4] have crafted a
pill classification framework tailored for Few-shot Learning
(FSL), leveraging a combination of traditional image features
and metric learning. Nguyen et al. [5] introduced an incre-
mental multi-stream intermediate fusion framework aimed at
the Class-Incremental Learning (CIL) issue. However, a blank
remains in addressing the challenging but more practical few-
shot class-incremental pill recognition.

To summarize, while existing efforts have marked some
progress, pill recognition remains an underexploited field with
the following challenges:

• The lack of realistic datasets. Although some pill
datasets have been proposed [7], [6], [4], the pills in their
images are either manually separated, or these images
only contain a single object, as shown in Fig. 1 (b) and
(d). This deviates completely from the real application
scenarios where pills often adhere to each other, as
exemplified in Fig. 1(c). The practical system is expected
to be able to handle the recognition task related to
randomly placed pills. The lack of realistic pill image
datasets hinders the development and application of pill
recognition approaches.

• Large intra-class variations and small inter-class vari-
ations. Variations generated by different factors, such as
randomly placed sides, illumination change, occlusion,
and noise, result in significant effects on the pill appear-
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Lack of reality
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(d) Pill images from CURE dataset

(e) Pill images from our FCPill dataset

(b) Manually separated pills (c) Our pill images from hospitals

(a) Challenges in few-shot class-incremental pill recognition

Fig. 1: The main challenges of few-shot class-incremental pill recognition and images from related datasets. In (a), we
summarized a taxonomy of the difficulties of pill images and the design of a few-shot class-incremental pill recognition
system. (b) provides the pill images used in [6]. These pills are manually separated, which is against the practical scenario. (c)
shows the images we collected from the real application scenario in hospitals, and it can be found that the phenomenon of pill
adhesion often occurs. (d) and (e) show CURE and our FCPill dataset, respectively. Each column corresponds to one class. In
(d), different textures on different sides and diverse imaging conditions contribute to large intra-class variations. Conversely, (e)
illustrates how pills from distinct classes can appear similar, leading to small inter-class variations. In addition, (e) highlights
cases of pill adhesion.

ance, causing large intra-class variations (e.g., examples
shown in green and blue boxes of Fig. 1(d) and (e)).
Besides, since only a few forms are available during the
pill manufacturing process (as shown in yellow boxes of
Fig. 1(e), many pills of different classes are white and
round), small inter-class variations are common in pill
images.

• The lack of FSCIL ability. In pill recognition, most
deep learning approaches are static, relying heavily on
substantial data for predefined tasks. The emergence of
new pill classes requires frequent retraining and consum-
ing significant data, computational, and storage resources.
Thus, developing a dynamic algorithm that can adapt
to new pill classes with limited samples while retaining
existing knowledge is crucial. Pill recognition uniquely
challenges FSCIL with its large intra-class and small
inter-class variations. This issue escalates as more classes
are added, particularly when confusion between new
and old classes is intensified by the similarity among
numerous classes and the limited samples for new class
learning.

• The lack of discriminability. The current pill recognition
research has yet to develop a systematic and comprehen-
sive strategy to support discriminant feature learning to
solve the challenge of large intra-class and small inter-
class variations. This lack can affect the performance of
pill recognition systems.

Our study presents the DBC-FSCIL framework tailored for
few-shot class-incremental pill recognition in response to the
challenges outlined. This framework encompasses two major
learning strategies: forward-compatible learning during the
base session and backward-compatible learning during incre-
mental sessions. In the forward-compatible learning phase,
we innovatively synthesize virtual classes and apply the CT
loss function to enhance the model’s ability to recognize
new categories and ensure accurate recognition of previously
learned categories. The strategy of synthesizing virtual classes,
utilizing existing base classes to generate placeholders in
the feature space for future incremental classes, enriches the
diversity of the training set and provides additional semantic
information to the model. This aids in better distinguishing
between different feature patterns. The CT loss function fur-
ther optimizes the cohesion among similar samples and the
distinction between different classes, significantly boosting the
model’s discriminative power. For backward-compatible learn-
ing, we adopt a strategy based on uncertainty quantification to
synthesize reliable pseudo-features of old classes, facilitating
DR and KD. This approach allows for the flexible synthesis of
any number of pseudo-features, effectively reducing the need
for additional storage of samples and models and ensuring the
model maintains high recognition accuracy for old categories
while learning new ones. Furthermore, to support in-depth
research into FSCIL, we collect and construct a new pill image
dataset from real hospital environments, named FCPill. By
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evaluating various mainstream FSCIL methods and our method
on FCPill and another public pill dataset, CURE, we establish
new benchmarks for FSCIL. Our DBC-FSCIL outperforms
other methods.

The key contributions of this work can be summarized as
follows:

• We introduce a novel discriminative and bidirectional
compatible FSCIL framework to perform pill recognition,
DBC-FSCIL. It consists of forward compatibility learning
based on virtual class generation and a novel metric
loss, and backward compatibility learning based on DR
and KD of pseudo-old class features. It shows superior
performance across multiple benchmark datasets.

• We propose a novel CT loss, which merges the Triplet
loss and Center loss, harnessing the full potential of
sample pairs for training. This approach enhances intra-
class compactness and inter-class discrimination.

• We develop an innovative KD strategy utilizing Pseudo
Feature Synthesis (PFS). It uses a limited number of
features from the previous session to synthesize pseudo-
features. It combines uncertainty quantization and model
prediction to select reliable pseudo-features for efficient
KD, which exhibits better flexibility and saves storage
space.

• We construct a new pill image dataset, FCPill, for FSCIL,
where the images are sampled from eight groups across
seven hospitals in five cities. This dataset contains 60 base
and 40 new classes, each with 600 images. In addition,
a series of mainstream FSCIL methods are tested on this
dataset and another public dataset, CURE, providing new
benchmarks for FSCIL.

The remainders of this paper are organized as follows: In
Sec. II, we review the relevant basic knowledge and literature;
Sec. III introduce the collection and construction of our
proposed datasets; Sec. IV introduces our proposed methods
in detail; Sec. V gives dataset details and experimental results;
The conclusion is provided in Sec. VI.

II. RELATED WORK

A. Automatic Pill Recognition

There are some existing works [8], [9], [6], [4], [10], [11],
[5], [7] focusing on the development of pill recognition system.
Most of these research efforts utilize private datasets, although
there are instances where public datasets have been employed,
notably the CURE dataset [4] and the now-unavailable NIH
dataset [12]. In the early stage, these systems predominantly
relied on feature engineering approaches [8], [9], as evidenced
by [8], which highlighted the efficacy of shape, color, size,
and imprint features in pill recognition. Since deep learning
has shown overwhelming advantages in many computer vision
tasks, it has become the dominant technology in the research
of pill recognition systems. The related studies primarily
focus on the object detection task and classification task.
Object detection methods can be categorized into one-stage
frameworks [10], [11] and two-stage frameworks [6], [7].
For example, Pornbunruang et al. [10] utilized CenterNet,
a one-stage method, for direct localization and classification

of pills. In contrast, Ou et al. [6] implemented a two-stage
approach, introducing an enhanced feature pyramid network
for localization preceding classification. Recent classification
studies [4], [5] relevant to our work have surfaced. Ling et
al. [4] developed a pill classification framework for FSL,
primarily utilizing traditional image features combined with
metric learning. Nguyen et al. [5] proposed an incremental
multi-stream intermediate fusion framework for tackling the
CIL problem. However, there remains to be a blank in ad-
dressing the challenging but more practical few-shot class-
incremental pill recognition.

B. Few-shot Learning

The purpose of FSL is to design a machine learning
algorithm that can rapidly generalize to new tasks containing
only a few samples with supervised information based on
previous knowledge [13], [14]. Each new task usually includes
a support set and a query set, and the data in the two sets
do not intersect [15]. The support set contains a few labeled
training samples, which assist the algorithm based on prior
knowledge to make predictions on the query set. The data in
the support set is often described as N−way K−shot, which
means that the support set contains N classes, and each class
has K labeled samples. In recent years, plenty of studies have
focused on developing FSL algorithms. They can broadly be
summarized into optimization-based and metric learning-based
methods [16]. Optimization-based methods train a model with
data from previous base classes and then fine-tune the classifier
or the whole model with data from the support set in the
new task [17]. Metric learning-based methods concentrate
on learning a robust backbone to generate high-quality and
transferable feature representations [18]. The first few-shot pill
recognition framework [4] adopts the Triplet loss to obtain
discriminative feature representations to perform the FSL task.

C. Class-incremental Learning

CIL aims to create algorithms that learn from new classes
sequentially while retaining prior knowledge, as highlighted
in [19], [20]. CIL typically unfolds over sessions, each with
distinct training and testing datasets. The learning shifts to
the session i, rendering the previous session’s training data
inaccessible, but testing includes datasets from all sessions.
FSCIL can be seen as a CIL challenge that emerges when
confronted with a constrained number of samples. CIL ap-
proaches fall into three categories [19]: parameter-based [21],
[22] focusing on preserving key model parameters, distillation-
based like LwF [23] which introduced KD to CIL, and
rehearsal-based [24], [25], which save past data for training
on new classes. iCaRL [26] combines feature representation
and classifier learning, using nearest neighbor classifiers and
distillation loss to prevent forgetting.

D. Few-shot Class-incremental Learning

FSCIL is a recent machine learning topic proposed in [27].
It aims to design a machine learning algorithm that can
continuously learn knowledge from a sequence of new classes
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with only a few labeled training samples while preserving the
knowledge learned from previous classes [27], [28]. In the FS-
CIL setting, the data stream usually consists of a base session
with sufficient training data and a sequence of incremental
sessions, whose training datasets are in the form of N−way
K−shot. Previous session training datasets are unavailable
once the learning process goes into session i. In contrast, the
testing data used in session i consists of the testing datasets
from all previous and current sessions. Recently, quite a few
works have focused on developing the FSCIL algorithm. For
instance, TOPIC [27] is the first algorithm specifically used
to perform the FSCIL task. It uses the neural gas network
to preserve the topology of features between the base and
new classes to avoid forgetting [27]. CEC [29] adopts GAT to
update the relationships between the base and new prototypes,
which can help the classifier find better decision boundaries.
FACT [19] first imported the idea of forward compatibility
to enhance the adaptability of the FSCIL model for future
incremental classes.

III. FCPILL DATASET

A. Data Collection
Existing pill datasets are categorized into single-object and

multi-object types, with the latter often manually separating
pills, which does not align with real-world applications. In
most hospitals, patients usually receive pill packets based
on prescriptions, typically containing multiple classes and
instances of pills that are often adhered or overlapped. This
scenario is not accurately represented in current datasets. To
fill this gap, we collected a substantial number of original pill
packet images and their corresponding electronic prescriptions
from real hospitals. Following approval from the relevant
ethics committee, we employed a device equipped with top
and bottom cameras to capture images of the pill packets,
recording both the front and back views. Ultimately, we
gathered 473,148 original pill packet images from eight groups
across seven hospitals in five Chinese cities. Images containing
the same pill class were categorized based on the prescriptions
to facilitate dataset construction.

B. Data Annotation
After acquiring images of each pill class, we started to

extract individual pill objects. Given that most pill packet
images contain multiple pills, we first located and segmented
individual pills, followed by manual classification based on
pill templates. Considering the real scenarios, where pills
often adhere to each other, we primarily employed watershed
algorithms and dilation-erosion processes for segmentation.
To preserve complete pill information as much as possible,
we dilated the segmentation results to cover the entire object
area, thereby maintaining the challenge posed by adhesion.
After segmentation, trained human experts performed data
annotation, comparing pill templates to select the correct
individual pill images. After completing the preliminary an-
notation, we followed the commonly used FSCIL benchmark
dataset, miniImageNet, to filter out classes with a minimum of
600 samples. This criterion led to the selection of 100 classes,
forming the foundation of our FCPill dataset.

C. Evaluation Protocol

After compiling the FCPill dataset comprising 100 classes,
each with 600 samples, we developed an evaluation protocol
tailored for FSCIL. Specifically, similar to miniImageNet,
we partitioned the dataset, allocating 300 images per class
for training and the remaining 300 for testing. After that,
60 classes were earmarked as base classes, while the rest
were categorized as incremental classes. These incremental
classes were further divided into 8 incremental sessions, each
incorporating 5 classes. Within each class of these sessions, 5
samples were randomly chosen to serve as the training data,
adhering to the 5-way 5-shot format. The specific partition file
can refer to our code.

IV. PROPOSED METHODOLOGY

In this section, the problem setting of FSCIL is first intro-
duced. Subsequently, an overview of our proposed framework
is presented. This is followed by detailed descriptions of
the forward-compatible learning and the backward-compatible
learning within the framework.

A. Problem Setting

Assume {D0
train, · · · , Dn

train} and {D0
test, · · · , Dn

test} de-
note the training and testing datasets in FSCIL sessions.
The n means the incremental session number in the current
FSCIL task. D0

train denotes the training dataset in the base
session, which contains abundant labeled training data. ∀
integer i ∈ [1, n], Di

train is in form of N−way K−shot,
which means the training dataset in session i contains N
classes and each class has K labeled samples. Di

test denotes
the testing dataset in session i. ∀ integer i ∈ [0, n], Ci

denotes the corresponding label space of Di
train and Di

test.
The relevant classes in different sessions have no intersection,
i.e., ∀ integer i, j ∈ [0, n] and i ̸= j, Ci∩Cj = ∅. When the
training process comes into session i, only the entire Di

train is
available, while the entire training datasets of previous sessions
are no longer available. For the evaluation at session i, the
testing data consists of all the testing datasets from current and
previous sessions, i.e., D0

test ∪ · · · ∪Di
test. FSCIL encounters

two major challenges: unreliable empirical risk minimization
due to limited supervised data, affecting model generalization
and increasing overfitting risks, and the stability-plasticity
dilemma, where continual addition of new classes risks over-
writing old knowledge, leading to catastrophic forgetting or
intransigence. Balancing model stability and plasticity remains
a central challenge [30].

B. Overall Framework

The concept of compatibility is a design characteristic
considered in software engineering [19]. Forward compati-
bility enables a system to process inputs intended for future
versions, whereas backward compatibility facilitates interoper-
ability with older legacy systems [19]. To perform the few-shot
class-incremental pill recognition with the continuous learning
of new classes and the retention of old class knowledge, we
propose a novel bidirectional compatible FSCIL framework
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(DBC-FSCIL), as depicted in Fig.2. DBC-FSCIL comprises
two key components: forward-compatible learning, covered in
phases 1 and 2, and backward-compatible learning in phase 3,
as outlined in Fig.2.

In short, in Stage 1, the DBC-FSCIL framework gener-
ates virtual classes using existing pill images. These virtual
classes are combined with the real base classes for training
the backbone, endowing its forward-compatible capability.
This enables efficient feature extraction for future incremental
classes, allowing the model to adapt to new classification tasks
with limited samples while low interference with previous
classification tasks. Considering the large intra-class and small
inter-class variations in pill images, we propose a novel metric
loss function to facilitate learning more discriminative features
by the backbone. Stage 2 focuses on further fine-tuning the
real classes in the base session after the weight initialization,
enhancing its adaptability for the classification in the base
session. Stage 3 aims to endow the model with backward
compatibility during the incremental learning phase. This is
achieved by employing uncertainty quantification and model
predictions to synthesize and select reliable pseudo-features of
old classes. These pseudo-features are then integrated into the
incremental learning process through DR and KD strategies,
thereby effectively preserving previous knowledge.
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Fig. 2: The DBC-FSCIL Framework for Pill Recognition:
Stage 1 focuses on the virtual class generation and forward-
compatible learning; Stage 2 aims at fine-tuning the model
for base session classification; Stage 3 is dedicated to the
uncertainty-guided synthesis of pseudo old class features for
KD, ensuring backward compatibility in the incremental learn-
ing process.

C. Forward Compatibility Learning

Many FSCIL algorithms adopt a strategy of freezing the
backbone after base session training to mitigate overfitting
and catastrophic forgetting in the incremental learning process.
They then integrate the frozen backbone with the Nearest
Class Mean (NCM) classifier to perform FSCIL. This strategy
surpasses many other methods [31]. Specifically, in the base

training phase, Cross-entropy (CE) loss is prevalently utilized
to initialize the backbone. The total classification loss is
expressed as:

Lcls (ϕ;x, y) = Lce (ϕ (x) , y) , (1)

where Lce (·) denotes the CE loss, x represents the sample, y
is the corresponding label, and the model can be decomposed
into the backbone and classifier: ϕ(x) = WT g(x), with
ϕ(x) ∈ R|C

0|×1, g(x) ∈ Rd×1, and W ∈ Rd×|C0|. After
the base training, the backbone is frozen. The prototypes in
the NCM classifier are generated by averaging the features of
each class, formulated as W = {w0

1,w
0
2, · · · ,w0

|C0|} ∪ · · · ∪
{wi

1, · · · ,wi
|Ci|}. During inference, the features derived from

the test sample are utilized to compute similarity with each
prototype in the NCM classifier, typically employing cosine
similarity. The classification is then based on the prototype
most similar to the test sample.

In the base session, despite the availability of sufficient
training samples for initializing the backbone, the robustness
and generalizability of the backbone, primarily trained by
the CE loss for classification, remain ambiguous for unseen
incremental classes [32]. Moreover, unlike other natural im-
ages, pill images exhibit the challenge of large intra-class
and small inter-class variations, exacerbating the issue of
poor generalization. To address this challenge, we propose a
strategy that involves optimizing the loss function to promote
the learning of discriminative features and synthesizing virtual
categories to enhance the forward compatibility of the model.

1) Center-Triplet Loss: The features learned by CE loss
often lack discriminability, primarily because the core objec-
tive of CE loss is to delineate decision boundaries between
different classes [33]. Studies [32], [34] have shown that
due to the poor class margins, it exhibits poor generalization
performance, potentially rendering it unsuitable for FSCIL.
Considering that the FSCIL model needs to continuously adapt
to new classes, if the prototypes are sufficiently distant from
each other and the features of the same class are closely
clustered around their prototype, it facilitates better support
for FSCIL. In many FSL studies [4], [35], [36], triplet loss
is widely used to learn discriminative feature representations.
However, it cannot consider the inter-distance within one
class [33], and the triplet mining significantly affects the
training process.

Specifically, for ∀ (xa,xp,xn) ∈ T , the optimization pur-
pose of triplet loss is

∥g (xa)− g (xp)∥+m < ∥g (xa)− g (xn)∥, (2)

where T denotes the set of all the possible triplets of training
samples. Each triplet consists of an anchor sample xa, a
positive sample xp with the same label as xa, and a negative
sample xn from another class. m is the margin value. ∥ · ∥
denotes the calculation of Euclidean distance. Based on the
optimization purpose in Eq. 3, the Triplet loss can be formu-
lated as follows:

Lt (g;x) = max(0,m+ ∥g (xa)− g (xp)∥ − ∥g (xa)− g (xn)∥).
(3)

It’s worth noting that not all the triplets in T can promote
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model optimization. Most triplets in T belong to the easy
triplets that satisfy Eq. 3 and cannot contribute to the training
process. Only semi-hard and hard triplets in T facilitate model
progress. However, extremely hard triplets can cause model
collapse [37]. The effectiveness of triplet mining is crucial, but
some valuable triplets are often overlooked [33]. For example,
a triplet A with positive pair distance b and negative pair
distance a is considered easy and ineffective if the margin
in Triplet loss, m, is less than |b− a|. Similarly, a triplet
B with distances b + n and a + n (where n is a positive
number) remains ineffective. This scenario shows that Triplet
loss inadequately constrains intra-class compactness, leading
to the neglect of triplets that could be beneficial, suggesting
the need for better utilization of potential triplets to improve
intra-class compactness.

To overcome Triplet loss’s limitations, we propose the
CT loss, combining Center loss concepts to boost intra-class
compactness. It aims at distinct representation learning by
anchoring a class and minimizing the distance between its
samples and center, less than the distance to the nearest
different class center. The CT loss is mathematically expressed
as:

Lct (g;x) = max(0,m+ ∥g (x)− cy∥ −min
j ̸=y

∥cy − cj∥).
(4)

Here, the triplet (x, cy, cj) includes a sample x, its class center
cy , and the nearest different class center cj . The loss updates
the backbone to ensure the distance between the sample’s
feature and its center cy is less than the distance to cy by
a margin m. Fig. 3 shows the details of related losses. The
joint training uses both CE loss and CT loss, formulated as:

Ltotal = Lcls + λLct, (5)

where λ balances the CT and classification losses.

(b) Triplet loss

(d) Center-triplet loss(c) Center loss

(a) Cross-entropy loss

Fig. 3: The illustrations of related metric losses. (a) CE loss
aims to learn the decision boundary; (b) Triplet loss seeks
to constrain the distance between features of the same class
to be less than the distance between different classes by a
predefined margin; (c) Center loss encourages the intra-class
compactness; (d) Our proposed CT loss further promote the
intra-class compactness and inter-class separability by directly
considering the distance between different class centers.

2) Virtual Class Generation: In addition to the develop-
ment of CT loss for enhanced discriminative feature learning,
our approach during the base training is focused on estab-
lishing forward compatibility. Similar to existing works [19],
[38], [39], during the base training, we synthesize various
virtual classes and combine them with base classes to train
the backbone, ensuring its generalization capability in incre-
mental sessions. These virtual classes play two crucial roles
in achieving forward compatibility: they act as placeholders in
the feature space for future class updates and serve as sources
of diverse semantic knowledge, guiding the model to engage
in extensive learning across various semantics.

Specifically, due to the significant differences between pill
images and natural images, the methods of synthesizing virtual
classes in existing forward compatibility studies are not able
to accurately emulate real pill classes. By analyzing the
characteristics of pill images, we observed that pills have
structured shapes, such as circular, oval, or capsule forms,
and exhibit uniform color, fixed sizes, and consistent textures
within each class. Leveraging these characteristics, we develop
a specialized approach to synthesize virtual pill classes. This
involves applying random color and size transformations to
pill samples in the base session, thereby generating realistic
virtual classes. The generation process can be expressed as
(xrv, yrv) = F (x, y), where (xrv, yrv) denotes the image-
label pair from the union of real and virtual dataset, and F
denotes the transformation function. This strategy doubles the
label space and ensures the virtual classes closely resemble
actual pill classes. The union of real and virtual classes is used
to train the backbone to facilitate forward compatibility and
generalization capability. Following the integration of virtual
classes, the training loss functions for the backbone can be
articulated as follows:

Lcls (ϕ;xrv, yrv,F) = Lce (ϕ (xrv) , yrv) ,

Lct (f ;xrv) = max(0,m+ ∥f (xrv)− cyrv
∥ − min

j ̸=yrv

∥cyrv
− cj∥),

Ltotal = Lcls + λLct.
(6)

D. Backward Compatibility Learning
In our DBC-FSCIL framework, backward-compatible learn-

ing primarily aims to efficiently retain previous knowledge
while learning new knowledge, achieved through DR and KD.
Currently, although some FSCIL methods [40], [41] balance
the learning of new and old knowledge by employing raw
DR and KD during the learning process of new sessions, they
typically require storing samples from previous classes and
face the challenge of insufficient comprehensive retention of
old knowledge due to limited available samples. Specifically,
existing methods encounter several challenges: 1) Limited
samples in incremental sessions may hinder a comprehensive
review of knowledge; 2) As the number of classes increases,
so does the demand for storage space; 3) Storing raw samples
introduces additional privacy risks; 4) KD necessitates extra
storage for models trained in previous sessions. Our novel
strategy addresses these challenges by merging DR and KD
with PFS, enhancing backward compatibility, and reducing
storage demands.
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1) Pseudo Feature Synthesis: Unlike existing methods, we
train a robust backbone in the base session and keep its feature
extractor frozen during incremental sessions, training only the
fully connected layers to maintain generalization capabilities
and forward compatibility. We consider using features ex-
tracted by this frozen feature extractor for DR and KD, aiming
to reduce storage space requirements and minimize privacy
risks. However, due to the few-shot condition, relying solely
on these features might not be sufficient for a comprehensive
knowledge review. Therefore, we propose a strategy that
utilizes features extracted from existing classes combined with
uncertainty quantification and model predictions to synthe-
size and select reliable pseudo-features, thus overcoming the
limitations imposed by the few-shot samples. The details are
showcased in Alg. 1.

Algorithm 1: Pseudo-feature Synthesis for Session i

Input: Training dataset Di
train, trained model ϕi (with

feature extractor φi and fully connected layers
ψi), number of features P to be stored per
class, number of pseudo-features Q to
synthesize per class.

Output: Set of synthesized pseudo-features S.
Initialize an empty set S for storing pseudo-features.
foreach class c ∈ Di

train do
Extract features {fci}

Nc
i=1 for all Nc samples in

class c using φi.
Compute mean feature µc =

1
Nc

∑Nc

i=1 fci .
Store P randomly selected features and mean
feature µc in a memory bank Mc.

end
foreach class c ∈ Di

train do
Set countc = 0.
while countc < Q do

Select a random feature vector f from Mc.
Generate a random scalar α ∈ (0, 1).
Synthesize pseudo-feature
fv = αf + (1− α)µc.

Predict class label of fv using ψi(fv) and
compute information entropy H(fv).

if ψi(fv) predicts class c and
H(fv) < threshold then

Append fv to S.
Increment countc by 1.

end
end

end

In Alg. 1, information entropy, also called Shannon entropy,
is a well-defined measurement for uncertainty, which can be
defined as follows:

H(fv) = −
|C|∑
c=1

ψi(fv) logψi(fv), (7)

where |C| denotes the total number of classes in session
i, ψi(fv) represents the probability. High entropy denotes
low confidence and vice versa. Our PFS approach allows
the synthesis of a specified number Q of reliable pseudo-
features for each class. This strategy conserves sample storage
space, mitigates privacy concerns, and facilitates the simula-

tion of more diverse features. Consequently, this ensures the
comprehensive review of previous knowledge during DR and
enhances the preservation of previous knowledge in the KD
process.

2) Data Reply and Knowledge Distillation: Following the
synthesis of reliable pseudo-features from previous sessions,
our DBC-FSCIL framework employs two strategies to ensure
a balanced integration of old and new knowledge. Initially,
we utilize the pseudo-features representing old categories for
DR. This approach ensures that while the fully connected
layers of the model are learning features of new classes
in session t, they are also engaged in learning from the
pseudo-features of old classes, thereby maintaining a balance
in knowledge acquisition across old and new classes. This
process is mathematically represented as:

Lcls (ψt; frv, yrv) = Lce (ψt (frv) , yrv) , (8)

where ψt represents the fully connected layers, frv denotes
the union of features extracted from the current session and
pseudo-features of previous sessions, and yrv is the corre-
sponding label. In addition to the DR, we have incorporated
a KD approach in our framework. This technique facilitates
the transfer of knowledge learned from old to new models.
The distillation process is mathematically represented using
the Kullback-Leibler (KL) divergence, a measure of how
one probability distribution diverges from a second, expected
probability distribution:

Ldistill (ψt, ψt−1; frv) = KL

(
ψ (frv)

T
,
ψt−1 (frv)

T

)
(9)

where T is the temperature parameter. The KL divergence
in this context quantifies the difference between the softened
probability distributions of the teacher and student models. The
joint training loss in incremental sessions can be formulated
as follows:

Ltotal = Lcls + βLdistill, (10)

where β balances the classification and KD losses.
The flexibility in the number of synthesized pseudo-features

further enhances the efficiency of both DR and KD. Moreover,
as our framework utilizes a consistent feature extractor across
different sessions, it necessitates only the retention of weights
in the fully connected layers to assist in the KD process.
This significantly reduces the memory space required for
model storage. Our method offers an efficient solution for the
effective amalgamation of old and new knowledge in FSCIL
scenarios.

V. EXPERIMENTS

A. Datasets and Protocols

Our DBC-FSCIL framework is evaluated on our proposed
FCPill dataset and the public CURE pill dataset [4].

mCURE: In addition to our proposed FCPill dataset, we
evaluate our framework on CURE [4], a public pill image
dataset originally proposed for FSL. CURE contains 1873
images of 196 classes, and each class has approximately 45
samples. To make it fit the setting of FSCIL, we follow the
similar splits as miniImageNet in [27] to sample 171 classes
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to create the mCURE dataset, where 171 classes are divided
into 91 base classes and 80 new classes. These new classes
are further divided into eight incremental sessions, and the
training data in each session is in the form of 10-way 5-shot.

To comprehensively evaluate our DBC-FSCIL framework,
we employed three metrics: 1) The accuracy values obtained
on every session; (2) The Performance Drop (PD) rate, which
measures the absolute decline in accuracy from the base to the
final session; (3) The Average Accuracy (AA) of all sessions.

B. Implementation Details

Model Configurations: In most FSCIL studies, ResNet18 is
frequently utilized as the backbone. Our research also employs
ResNet18 as the backbone for the pill datasets. A distinctive
aspect of our approach is the addition of a fully connected
layer at the end of ResNet18 to enhance backward-compatible
training during the incremental learning stage. During the
training stage, the model is optimized using SGD with a
learning rate of 0.1, momentum of 0.9, and weight decay of
0.0005. After completing the base session training, we freeze
all parameters except those in fully connected layers, which are
exclusively trained during incremental sessions. Classification
is performed using the softmax function. Our framework is
implemented in PyTorch 2.1 and Python 3.9, and trained on
the Nvidia Tesla V100 GPU.

Training Details: In the experiment for pill datasets, the
training framework is divided into three stages: forward-
compatible training in the base session, fine-tuning for classi-
fication in the base session, and backward-compatible training
in incremental sessions. For forward-compatible training, we
set the epoch number to 100, CT loss weights to 0.05 (for
FCPill) and 0.1 (for mCURE), and margin values to 1 (for
FCPill) and 2 (for mCURE). The fine-tuning phase involves
50 epochs with 5 (for FCPill) and 4 (for mCURE) random
stored features per class. In the backward-compatible training
phase, we set the epoch number to 50, synthesize 10 (for
FCPill) and 12 (for mCURE) pseudo-features per class, with
KD loss weights of 0.4 (for FCPill) and 0.6 (for mCURE) and
a distillation temperature of 3 (for FCPill) and 5 (for mCURE).

C. Comparison with Other Methods

To fully demonstrate the performance of our method, we
conduct performance comparisons on our proposed FCPill and
the public mCURE with several representative SOTA methods.
These include compatibility methods such as FACT [19],
ALICE [38], and SAVC [39], as well as non-compatibility
methods like CEC [29], LIMIT [42], SSFE-Net [43], and
BiDistFSCIL [44].

Results on FCPill: Fig. 4 and Tab. I show that our DBC-
FSCIL framework consistently delivers the best performance
in all sessions on the FCPill dataset. In the base session, it
achieves a 96.38% accuracy, outperforming the leading non-
compatibility method, BiDistFSCIL, by 1.67%. Against other
compatibility methods, our framework surpasses FACT by
0.16%, ALICE by 7.18%, and SAVC by 1.76%. This success
indicates that our forward-compatible strategy effectively en-
hances class discriminability through virtual class generation

and CT loss. Compared to existing compatibility methods,
our framework not only adopts forward compatibility but also
focuses on sustaining backward compatibility during incre-
mental learning. In the final session, our method achieves the
best accuracy of 89.59%, and it exceeds forward-compatible
methods, including FACT by 4.86%, ALICE by 14.68%, and
SAVC by 7.09%. Moreover, it surpasses non-compatibility
methods in final session performance. Regarding AA, our
framework substantially surpasses the best-performing com-
patibility and non-compatibility methods by 2.97% and 2.00%,
respectively. Although our PD rate stands at 6.79%, which is
the second-best performance, it shows the strongest resistance
to catastrophic forgetting among compatibility methods. It’s
important to note that, as some studies [38] suggest, PD is not
an exhaustive metric for evaluating resistance to forgetting.
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Fig. 4: Comparison with SOTA methods on FCPill and
mCURE. Our method, DBC-FSCIL, comprehensively sur-
passes other methods.

Results on mCURE: Fig. 4 and Tab. I illustrate that our
method exhibits excellent performance across all sessions on
the mCURE dataset. In the base session, it achieves a no-
table 93.85% accuracy, outperforming most non-compatibility
methods and essentially on par with the best-performing
method, SSFE-Net. Compared to other compatibility meth-
ods, our approach excels FACT by 9.85%, ALICE by
42.75%, and SAVC by 4.22%, demonstrating the efficacy of
our forward-compatibility strategy. Thanks to our backward-
compatibility approach, our method significantly outshines
forward-compatibility focused methods in the final session,
surpassing FACT by 20.84%, ALICE by 40.93% and SAVC by
11.01%. Moreover, it outperforms non-compatibility methods
in the final session, exceeding CEC by 19.75%, LIMIT by
19.84%, SSFE-Net by 5.44% and BiDistFSCIL by 35.93%.
Regarding AA, our framework substantially surpasses the
best-performing compatibility and non-compatibility methods
by 8.59% and 3.15%, respectively. With a PD rate of only
15.69%, our method demonstrates effective resistance to for-
getting among compatibility methods. This indicates that our
approach extensively surpasses existing advanced methods on
the mCURE dataset.
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TABLE I: Comparison results of our DBC-FSCIL against other SOTA methods on FCPill and mCURE. Comp. shows whether
the method is compatible. (In %).

Dataset Comp. Method Venue
Session ID

AA↑ PD↓
0 1 2 3 4 5 6 7 8

FCPill

No

CEC [29] CVPR 21 93.71 91.63 90.08 90.22 89.10 88.67 89.22 89.34 88.11 90.01 5.59
LIMIT [42] TPAMI 22 93.11 90.07 88.65 88.54 87.18 86.68 87.33 87.39 86.01 88.33 7.10

SSFE-Net [43] WACV 23 94.49 93.26 90.61 90.53 88.63 87.72 88.40 88.54 87.29 89.94 7.20
BiDistFSCIL[44] CVPR 23 94.71 91.74 89.61 88.54 87.73 87.36 87.90 87.62 86.00 89.02 8.71

Yes

FACT [19] CVPR 22 96.22 92.84 89.98 89.31 87.80 86.72 87.09 86.67 84.73 89.04 11.49
ALICE [38] ECCV 22 89.20 85.84 83.40 81.46 78.73 77.48 76.76 76.13 74.91 80.43 14.29
SAVC [39] CVPR 23 94.62 92.57 90.02 89.28 87.20 85.95 85.04 84.14 82.50 87.92 12.12

DBC-FSCIL - 96.38 94.54 92.74 92.03 91.04 90.41 90.68 90.66 89.59 92.01 6.79

mCURE

No

CEC [29] CVPR 21 82.26 79.52 73.65 70.92 67.52 66.35 62.36 59.24 58.40 68.91 23.86
LIMIT [42] TPAMI 22 82.26 79.33 74.35 71.40 68.44 66.79 62.87 59.42 58.31 69.24 23.95

SSFE-Net [43] WACV 23 93.41 90.22 86.24 85.46 80.48 80.27 76.53 72.95 72.71 82.03 20.70
BiDistFSCIL[44] CVPR 23 67.36 63.66 58.69 54.71 51.22 48.19 46.23 42.70 42.22 52.78 25.14

Yes

FACT [19] CVPR 22 84.00 78.24 73.39 71.20 68.67 64.90 62.68 58.39 57.31 68.75 26.69
ALICE [38] ECCV 22 51.10 49.21 46.04 44.71 42.21 40.46 39.74 38.23 37.22 43.21 13.88
SAVC [39] CVPR 23 89.63 85.57 81.04 79.28 75.04 72.72 71.26 67.64 67.14 76.59 22.49

DBC-FSCIL - 93.85 91.67 88.15 87.48 84.00 83.63 80.81 78.86 78.15 85.18 15.69

D. Ablation Studies

To substantiate the significance of our proposed com-
ponents, we conducted ablation studies focusing on the
key aspects of our method, which consists of forward-
compatible learning and backward-compatible learning.
Forward-compatible learning encompasses virtual class gen-
eration and CT loss, while backward-compatible learning
includes DR and KD based on PFS and uncertainty-guided
selection. In Tab. II, we report the results starting with the
CE loss-based fine-tuning as the baseline and progressively
integrating virtual class generation, CT loss, raw PFS, and
PFS with uncertainty quantification.

On the FCPill dataset, compared to the baseline, the in-
troduction of virtual class generation resulted in a 1.17%
improvement in the base session and a 10.46% improvement in
the final incremental session. The inclusion of CT loss further
led to a 1.21% improvement in AA. The raw PFS enhanced the
performance by 14.72% in AA. The integration of uncertainty-
guided selection finally increased performance to 92.01%, a
0.79% improvement, in AA.

A similar trend was observed on the mCURE dataset. Virtual
class generation contributed to a 6.53% improvement in the
base session and a 3.83% improvement in the last incremental
session. The addition of CT loss led to further improvements of
2.85% and 6.75% in the base and final sessions, respectively.
The raw PFS increased the AA performance by 19.32%.
Although the final integration of uncertainty-guided selection
did not improve performance on the mCURE, this indicates
that the unfiltered pseudo-features were already capable of
adequately simulating real features. Integrating the uncertainty
filtering module can prevent additional risks due to poor
synthetic pseudo-features.

To investigate the contributions of each component of our
model in few-shot incremental pill recognition, we display the
confusion matrices generated by models in the last incremental
session of our ablation studies on the FCPill and mCURE
datasets in Fig. 5. A bright diagonal against a dim background
indicates higher classification accuracy. Our observations re-
veal that while the basic fine-tuning method provides relatively
clear diagonals for base classes, its effectiveness on new
classes is limited. However, with the integration of different
components, the model exhibits a noticeable improvement in
performance for both new and old classes. Particularly, the
implementation of forward-compatible learning significantly
enhances performance for base classes while also improv-
ing results for incremental classes. Further incorporating the
backward-compatible strategy markedly boosts performance
for incremental classes. This demonstrates that our method
effectively adapts to new classes and accurately recognizes old
classes, avoiding confusion in established decision boundaries.

E. Further Analysis

1) Effectiveness of Virtual Class Generation: To assess
the efficacy of our proposed method for generating virtual
classes, we present comparative performance results for both
the base class session and the last incremental session on the
FCPill and mCURE datasets, as shown in Fig. 6. We exam-
ine scenarios including no virtual class generation, one-fold
virtual class generation, and two-fold virtual class generation.
On the FCPill dataset, the one-fold virtual class generation
strategy demonstrates superior performance over the no virtual
class generation scenario, with improvements of 0.39% and
1.25% in the base class session and the last incremental
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TABLE II: Ablation studies on FCPill and mCURE. VCG, CT, PFS, and US denote virtual class generation, CT loss, PFS,
and uncertainty-guided selection, respectively. (In %).

Dataset VCG CT loss PFS US
Session ID

AA↑ PD↓
0 1 2 3 4 5 6 7 8

FCPill

95.01 86.87 80.04 74.33 69.58 65.50 58.18 54.27 51.52 70.59 43.49
✓ 96.18 88.65 81.06 77.53 73.98 69.83 64.83 63.55 61.98 75.29 34.20
✓ ✓ 96.38 90.05 83.62 79.98 75.24 71.15 67.32 63.70 61.11 76.50 35.28
✓ ✓ ✓ 96.38 93.80 91.71 91.19 89.89 89.45 89.95 89.83 88.76 91.22 7.62
✓ ✓ ✓ ✓ 96.38 94.54 92.74 92.03 91.04 90.41 90.68 90.66 89.59 92.01 6.79

mCURE

84.47 72.57 64.35 58.64 53.52 48.76 46.10 40.18 37.66 56.25 46.82
✓ 91.00 77.68 64.71 60.86 55.04 51.29 45.87 42.52 41.49 58.94 49.50
✓ ✓ 93.85 82.47 74.83 68.93 62.73 57.51 54.33 49.86 48.24 65.86 45.61
✓ ✓ ✓ 93.85 91.67 88.15 87.48 84.00 83.63 80.81 78.86 78.15 85.18 15.69
✓ ✓ ✓ ✓ 93.85 91.67 88.15 87.48 84.00 83.63 80.81 78.86 78.15 85.18 15.69

(a) FT on FCPill (b) FCL on FCPill (c) BCL on FCPill

(d) FT on mCURE (e) FCL on mCURE (f) BCL on mCURE

Fig. 5: Comparison of the confusion matrices of different
ablation methods on FCPill and mCURE datasets. FT, FCL,
and BCL denote fine-tuning, forward-compatible learning (in-
cluding VCG and CT loss), and back-compatible learning
(including PFS and US).

session, respectively. This strategy also outperforms the two-
fold virtual class generation, achieving improvements of 0.4%
and 2.56% in the base class session and the last incremental
session, respectively. Similarly, on the mCURE dataset, the
one-fold virtual class generation approach shows enhanced
results compared to the absence of virtual class generation,
with performance boosts of 2.5% and 3.96% in the base
class session and the last incremental session, respectively,
and surpasses the two-fold virtual class generation with an
improvement of 2.94% in the last incremental session.

2) Separation Capability of Center-Triplet Loss: To verify
the effectiveness of our CT loss in enhancing the separation
of new and old classes, we visualized the feature space of the
FCPill and mCURE datasets in the last session using t-SNE,
as depicted in Fig. 7. We randomly selected 6 base classes and
4 incremental classes, and compared the separation degree in
the feature space under CE loss, Triplet Loss, Center Loss,

(a) Accuracy on the base session (b) Accuracy on the final session

Fig. 6: Influence of virtual class generation methods. One-fold
virtual class generation obtains the best performance.

and our proposed CT loss. The observations indicate that the
performance of CE loss is the least effective; while Triplet
Loss improves inter-class separation, it fails to constrain intra-
class compactness. Although Center Loss can constrain intra-
class compactness, it offers limited improvement in inter-
class separation. Our proposed CT loss demonstrates the
most significant effect in inter-class separation and intra-class
compactness.

3) Analysis of Pseudo Feature Synthesis: To validate the
effectiveness of our proposed PFS method, we visualized
the feature space of the FCPill and mCURE datasets in the
final session using t-SNE, as shown in Fig. 9. We randomly
selected some classes and displayed the distribution of real
features and synthesized pseudo-features in the feature space.
The observations reveal that the synthesized pseudo-features
closely cluster with the real sample features on both FCPill
and mCURE datasets. This demonstrates that the synthesized
pseudo-features effectively emulate the features generated by
real samples, thereby aiding in the process of backward-
compatible learning.

4) Impact of Hyper-parameter: In our DBC-FSCIL frame-
work, the hyper-parameters for forward-compatible learning
include the coefficient λ, as defined in Eq. 5, which determines
the impact of CT loss, and the margin m in CT loss, as
detailed in Eq. 4. For backward-compatible learning, the
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(a) C. loss on FCPill (b) T. loss on FCPill (c) CT loss on FCPill

(d) C. loss on mCURE (e) T. loss on mCURE (f) CT loss on mCURE

Fig. 7: The t-SNE visualization of the features learned by dif-
ferent loss functions on FCPill and mCURE datasets. Classes
0-6 represent the base classes, while classes 7-10 represent the
incremental classes. Our CT loss gets the best class separation
degree.

(a) Features on FCPill (b) Features on mCURE

Fig. 8: The t-SNE visualization of the real and pseudo features
on FCPill and mCURE datasets. The round and cross marks
represent real and false features, respectively. Our PFS method
effectively mimics the real features.

hyper-parameters include P and Q in Alg. 1, representing
the number of real features stored per class and the number
of pseudo-features synthesized per class, respectively, along
with the temperature T and the coefficient β related to
KD loss, as outlined in Eq. 9 and Eq. 10. To thoroughly
evaluate the Influence of these hyper-parameters on model
performance, we present the results of the final session on the
FCPill and mCURE datasets with varying hyper-parameters
in Fig. 9. It is observed that the optimal hyper-parameters
for achieving the best performance on the FCPill dataset are
{λ,m,P,Q, T, β} = {0.05, 1, 5, 10, 3, 0.4}. Similarly, for the
mCURE dataset, the hyper-parameters yielding the highest
performance are {λ,m,P,Q, T, β} = {0.1, 2, 4, 12, 5, 0.6}.

VI. CONCLUSION

In this paper, we introduce the first FSCIL framework for
pill recognition, named DBC-FSCIL. This framework incor-

(a) CT loss on FCPill (b) PFS on FCPill (c) KD on FCPill

(d) CT loss on mCURE (e) PFS on mCURE (f) KD on mCURE

Fig. 9: Hyper-parameter influence on the FCPill and mCURE
datasets.

porates forward-compatible and backward-compatible learning
components. For forward-compatible learning, we propose an
innovative virtual class synthesis strategy and a CT loss to
enhance discriminative feature learning. These virtual classes
act as placeholders in the feature space for future class
updates, providing diverse semantic knowledge for model
training. Regarding backward-compatible learning, we develop
a strategy to synthesize reliable pseudo-features of old classes
using uncertainty quantification, facilitating DR and KD. This
approach enables flexible feature synthesis and significantly
reduces the additional storage requirements for samples and
models. Furthermore, we have constructed a new pill image
dataset for FSCIL and assessed various mainstream FSCIL
methods, establishing new benchmarks. Our experimental re-
sults demonstrate that our framework surpasses existing SOTA
methods.
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