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In this paper, we propose a novel Low-cost U-Net (LCU-Net) for the Environmental Microorganism (EM)
image segmentation task to assist microbiologists in detecting and identifying EMs more effectively. The
LCU-Net is an improved Convolutional Neural Network (CNN) based on U-Net, Inception, and concatenate
operations. It addresses the limitation of single receptive field setting and the relatively high memory
cost of U-Net. Experimental results show the effectiveness and potential of the proposed LCU-Net in the
practical EM image segmentation field.
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1. Introduction

In industrialized countries, industrial pollution has been threat-
ening human health and environments. Thus, different methods of
controlling, reducing, and eliminating pollution are being estab-
lished. The methods of eliminating environmental pollution gener-
ally include three major categories: chemical, physical, and biolog-
ical approaches. By contrast, the biological method is more harm-
less and efficient [1]. Environmental Microorganisms (EMs) are very
tiny living beings in our surroundings, which are natural decom-
posers and indicators. For example, Actinophrys can digest the or-
ganic waste in sludge and increase the quality of freshwater; Ro-
tifera can decompose rubbish in the water and reduce eutrophica-
tion. Therefore, EM research plays a significant role in managing
environmental pollution [2], and the identification of EMs is the
basic step for related research.

Generally, there are four traditional types of EM identifica-
tion methods. The first is the “chemical method”, which is highly
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accurate but often results in secondary pollution of chemical
reagents [3]. The second strategy is the “physical method”. It also
has high accuracy but requires expensive equipment [3]. The third
is the “molecular biological method”, which distinguishes EMs by
sequence analysis of gene [4]. This strategy needs expensive equip-
ment, massive time consumption, and professional researcher. The
fourth is the “morphological method”, which needs a skillful oper-
ator to observe EMs under a microscope and give the EM identities
by their shape characteristics [1]. Hence, these traditional methods
have their respective disadvantages in practical work.

Due to the drawbacks of the traditional methods and the excel-
lent performance on segmentation tasks of CNNs, the widely used
U-Net [5] is firstly considered in our work. The training strategy
used in U-Net relies on the strong use of data augmentation to use
the available annotated samples more efficiently [5]. Besides, the
end-to-end structure used in U-Net can retrieve the shallow infor-
mation of the network [5]. Therefore, U-Net provides the high pos-
sibility to achieve high accuracy with our small EM training data
set.

The cost and reliability of CNN are extremely important [6].
However, the adaptability of U-Net is limited by its single recep-
tive field setting, and the memory cost of U-Net is relatively high
in practical work, so we propose a novel Low-cost U-Net (LCU-Net)
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Fig. 1. The workflow of the proposed EM image segmentation method using LCU-Net.

for the EM image segmentation task to assist microbiologists to
identify EMs more effectively. The LCU-Net is an improved CNN
based on U-Net [5], Inception [7], and concatenate operations [8].
In contrast to the original U-Net, it increases the overall segmenta-
tion performance and reduces the memory cost. Besides, we apply
fully connected Conditional Random Field (Dense CRF) [9], which
can obtain the spatial information between pixels in an image,
as a post-processing step to enhance the segmentation result of
LCU-Net. The workflow of the proposed LCU-Net segmentation ap-
proach is shown in Fig. 1.

In Fig. 1, (a) Training Images: The training set contains 21 cate-
gories of EM images and their corresponding ground truth (GT) im-
ages. (b) Data Augmentation: To solve a small training set problem,
the size of data set is increased. (c) Training Process: LCU-Net is
trained to perform the segmentation task and generate a segmen-
tation model. (d) Test Images: The test set contains 21 categories
of EM images. (e) Post-processing: Dense CRF is used to enhance
the segmentation results by spatial information among pixels in an
image.

The main contributions of this paper are as follows:

« We propose LCU-Net for EM image segmentation to assist mi-
crobiologists, and it achieves better segmentation performance
than that of U-Net.

« LCU-Net newly applies thinner convolution filters and concate-
nate operations to reduce the memory cost to less than one-
third of U-Net.

The structure of this paper is as follows: Section 2 is the related
work about existing EM segmentation methods. Section 3 gives a
detailed description of LCU-Net. Section 4 introduces experiment
settings, evaluation methods, and results. Section 5 closes this pa-
per with a brief conclusion.

2. Related work

In this section, related works about microorganism image seg-
mentation techniques are briefly summarized in Table 1, including
classical and machine learning methods. For more details, please
refer to our previous survey in [10].

2.1. Classical segmentation methods
As shown in Table 1, threshold-based, edge-based, and region-

based methods are usually used for the EM image segmentation
task. The basic idea of threshold-based methods is to find out

Table 1
Microorganism image segmentation methods.

Category Subcategory Related work
Threshold-based Methods [11-15]
Classical Edge-based Methods [16-19]
Region-based Methods [20-23]
. . Unsupervised Methods [24-26]
Machine Learning Supervised Methods [2,27-30]

the optimal threshold value of an image first and then binarize
this image with the threshold value [31]. Otsu thresholding algo-
rithm [32] is one of the most representative threshold-based meth-
ods. Edge detection methods transform an original image into an
edge image benefiting from the changes of gray tones in the im-
age [33], such as the Canny edge detection method [34]. Region-
based methods divide the entire image into subregions, such as the
Watershed algorithm [35].

The works [11-15] use different threshold-based methods for
microorganism image segmentation. For instance, [11] shows a
comparison between threshold-based segmentation methods for
evaluating biomass distribution in heterogeneous biofilms. The last
result shows that the iterative selection method is superior. In [14],
different algorithms based on Otsu thresholding are applied for the
segmentation of floc and filaments to enhance the monitoring of
actived sludge in wastewater treatment plants.

The works [16-19] use edge-based microorganism image seg-
mentation methods. For example, a segmentation work, which uses
Canny as the basic step, is introduced to identify individual mi-
croorganisms from a group of overlapping bacteria in [16]. In [19],
a segmentation method based on active contour is proposed to
segment large size images of zoo-planktons.

The works [20-23] use region-based methods for microorgan-
ism image segmentation. For example, in [20], the segmentation is
performed on gray-level images using a marker controlled water-
shed method. In [22], after converting the color mode and using
morphological operations to denoise, a seeded region-growing wa-
tershed algorithm is applied for segmentation.

2.2. Machine learning based segmentation methods

As shown in Table 1, the machine learning methods for mi-
croorganism image segmentation are grouped into two categories:
Unsupervised and supervised learning. There are some representa-
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Fig. 2. The network structure of U-Net.

tive unsupervised methods for microorganism image segmentation,
such as k-means [36] and Markov Random Field (MRF) [37]. Be-
sides, U-Net [5] is one of the most representative supervised seg-
mentation methods for microorganism image segmentation.

The works [24-26] use unsupervised methods. For example,
[24] evaluates clustering and threshold segmentation techniques
on tissue images containing tuberculosis bacilli. The final result
shows that k-means clustering (k = 3) is outstanding. In [25], a
comparison between CRFs and region-based segmentation meth-
ods is presented. The final result shows that these two kinds of
microorganism segmentation methods have an average recognition
rate higher than 80%.

The related works [27-30] use supervised methods in their
works. For example, [29] proposes a segmentation system to mon-
itor the algae in the water. First, image enhancement (sharpening)
is applied using a Retinex filtering technique. Then, segmentation
is done by using the Support Vector Machine (SVM). In [30], Rift
Valley Virus is the segmentation subject. Because of the insuffi-
cient data set, they use data augmentation to assist U-Net in the
segmentation work.

In our previous work [2], a supervised approach named Local-
Global CRF for EM image segmentation is proposed. VGG-16 is
trained first with EM images to generate pixel-level and global-
level features, then these features are used to train Random Forest
(RF) classifiers, and after that, these trained RF classifiers are used
as unary potentials by a CRF model. Finally, with the pairwise po-
tentials, the CRF model is applied to perform the EM image seg-
mentation task.

We find that few existing studies use neural networks for mi-
croorganism image segmentation from our investigation of exist-
ing methods. Since our data set contains 21 EM classes, the im-
ages of different EM classes vary greatly. Therefore, methods like
Otsu, Canny, k-means, and other methods may not perform well.
Besides, in recent years, with the extensive use of neural networks
in image segmentation, image segmentation performance has been
greatly improved. Therefore, U-Net, one of the most representative
neural networks in image segmentation, is first considered in our
work.

3. LCU-Net based EM image segmentation method
3.1. LCU-Net

Although U-Net is widely used, its adaptability is limited by its
single receptive field setting, and its memory cost is also relatively
high in practical work. To address U-Net’s limitation, we propose
LCU-Net, a CNN based on U-Net [5], Inception-V3 [7], and concate-
nate operations [8].

3.1.1. Basic knowledge of U-Net

As the structure is shown in Fig. 2, U-Net is a CNN that is ini-
tially used to perform the microscopic image segmentation task.
The training strategy of U-Net relies on the strong use of data aug-
mentation to make more effective use of the available annotated
samples. [5]. Besides, the end-to-end structure of U-Net can re-
trieve the shallow information of the network [5].

The structure of U-Net is symmetrical, consisting of a contract-
ing path (left side) and an expansive path (right side) [5]. In the
contracting path, each downsampling step contains a sequence of
two 3 x 3 convolution operations (each has a rectified linear unit
(ReLU)) followed by a max-pooling operation with the size of 2 x 2
and stride of 2 pixels. Pooling operation with the stride of 2 pix-
els can change the feature map’s size into half of the original.
In the contracting path, the downsampling step is repeated four
times, and as the number of repetitions increases, the number of
convolution filters increases by twice. As a result, the number of
feature map channels is double. In the expansive path, there are
three main operations in each upsampling step. The first is 2 x 2
up-convolution operation (a 2 x 2 upsampling operation followed
by a 2 x 2 convolution operation). The second is copy and con-
catenate. It copies the feature map generated by the correspond-
ing layer from the contracting path and connects it with the fea-
ture map generated from up-convolution. This operation can help
the network retrieve the spatial information lost by pooling opera-
tions [38]. The third operation is a sequence of two 3 x 3 convolu-
tion operations (each has a ReLU). The upsampling step is repeated
four times. The segmentation result is generated by the network’s



J. Zhang, C. Li, S. Kosov et al.

[y [ J\] J
L. A J | Y 7]
[/ | | |\ 7 [t/
ZT1T 7 71 7\7 [/ L ] U
v 117NV r£rr ry

(a) The 5x5 convolution filter

(b) Two 3x3 convolution filters.

Pattern Recognition 115 (2021) 107885

ﬂﬁ
/2 B B

[ /]
L/ ]
/20 S|

(c) The 3x3 convolution filter.

(d) 1x3 and 3x1 convolution filters.

Fig. 3. The strategies used by Inception-V2 and Inception-V3 to replace the big filter in the original Inception structure.

Noctiluca

Actinophrys

=Y

=

Matthew

Rotifera Colpoda

Fig. 4. An example of EM images with multiple scales.

Input

E 7X7 Convolution (ReLU)
E 5X5 Convolution (ReLU)
@ 3X 3 Convolution (ReLU)

E 1X1 Convolution (ReLU)
ij:) Concatenate

Fig. 5. The structure of BLOCK-I.

final layer, a 1 x 1 convolution operation with an activation func-
tion named Sigmoid.

3.1.2. Basic knowledge of inception

The original Inception, which jointly uses filters of different
sizes (1 x 1, 3 x 3, and 5 x 5), is proposed in GoogleNet [39]. Due
to the utilization of these filters, Inception can adapt to multi-
scale objects. However, there are also some disadvantages, such
as, the increasing of parameters, overfitting, and vanishing gradi-
ent. To address these problems, Inception-V2 combines a couple of
3 x 3 convolution filters to replace a 5 x 5 convolution filter [7].
As shown in Fig. 3(a) and 3(b), a 5 x 5 filter and a sequence of
two 3 x 3 filters have the same receptive fields, where the for-
mer has more parameters than the latter [7]. For further optimiza-
tion, Inception-V3 proposes a better approach, which combines a
1 x N convolution filter and a N x 1 convolution filter instead of a
N x N convolution filter [7]. As shown in Fig. 3(c) and 3(d),a N x N
filter and a sequence of 1 x N and N x 1 filters have the same
receptive field, where the former has more parameters than the
latter.

3.1.3. The structure of LCU-Net

There are multi-scale objects in EM images, as shown in Fig. 4.
Considering that U-Net is difficult to adapt to this situation of
multi-scale objects in EM images as shown in Fig. 4, we propose
LCU-Net to address this problem. As the U-Net structure shown
in Fig. 2, there is a sequence of two 3 x 3 convolution operations
before each pooling operation, each up-convolution operation, and
the final convolution operation with Sigmoid, so the receptive field
is limited. In contrast, in Inception series, convolution filters of
different sizes are used to obtain various receptive fields. Hence,
we propose BLOCK-I as shown in Fig. 5, which incorporates 1 x 1,
3 x3,5x5, and 7 x 7 convolution filters in parallel [40].

Although BLOCK-I can improve the adaptability of the net-
work, it increases the memory cost. As mentioned in Section 3.1.2,
Inception-V2 uses a sequence of two 3 x 3 convolution filters to re-
place a 5 x 5 convolution filter, and Inception-V3 uses a sequence
of 1 x N and N x 1 convolution filters to replace a N x N convo-
lution filter [7]. Considering these strategies in Inception-V2 and
Inception-V3, a sequence of three 3 x 3 convolution filters has the
same receptive field as a 7 x 7 convolution filter. Further, a se-
quence of 1 x 3 and 3 x 1 convolution filters is used to replace a
3 x 3 convolution filter. Therefore, the 7 x 7 convolution filter of
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BLOCK-I can be replaced by three sequences of 1 x3 and 3 x 1
convolution filters. Similarly, the 5 x 5 convolution filter of BLOCK-
I can be replaced by two sequences of 1 x 3 and 3 x 1 convolution
filters. The examples are shown in Fig. 6.

In Fig. 6, the 3 x 3, 5x 5, and 7 x 7 convolution filters can be
replaced by one, two, and three sequences of 1 x 3 and 3 x 1 con-
volution filters, respectively. We find that the former layers of the
three sequences of 1 x 3 and 3 x 1 convolution filters, which are
used to replace the 7 x 7 convolution filter, can be used to ob-
tain the same receptive fields as 3 x 3 and 5 x 5 convolution fil-
ters by concatenate operations. By this idea, we propose BLOCK-II
as shown in Fig. 7.

In Fig. 7, there are three nodes annotated as (a), (b), and (c)
in BLOCK-II, respectively. The concatenate operation is applied to
nodes (a), (b), and (c). It can obtain the same receptive fields as
3x3,5x5, and 7 x 7 convolution filters, respectively. Simultane-
ously, the above approach avoids the excessive use of the sequence
of 1 x 3 and 3 x 1 convolution filters. Therefore, this approach can
reduce more memory cost. Because of the lower cost of memory
with BLOCK-II, we newly deploy BLOCK-II in LCU-Net. The struc-
ture of the proposed LCU-Net is shown in Fig. 8.

Besides, we add a batch normalization layer after each convo-
lution layer and convolution transpose layer to reduce the internal
covariate shift [41] in LCU-Net, and the padding in mode “same”
is applied to each convolution filter. The details of the LCU-Net
are shown in Table 2. To make a comparison with BLOCK-I, we
also provide the details of the network based on BLOCK-I, which
is called U-Net-BI, in Table 2.

3.2. Post-processing with dense CRF

Although CNNs show good performance on the image segmen-
tation task, there are still some shortages. It cannot take the de-

pendency among local variables into consideration [42]. The CNN
works through the receptive field of the convolution filter. That is
why the size of the convolution filter is so important to the perfor-
mance of CNN. In [9], the fully connected CRF (Dense CRF) can es-
tablish pairwise potentials on all pairs of pixels in an image. As the
Dense CRF workflow is shown in Fig. 9, when we use this approach
as post-processing, it can effectively obtain the global information
of the whole image to enhance the segmentation result.

The Dense CRF model of [9] employs the energy function, which
is the sum of unary potential and pairwise potential. The function
is shown in Eq. (1).

E@®) = U®)+ > P(x:.x)) (1)
i N

In Eq. (1), x is the label assignment of pixel. U(x;) represents
the unary potential, which measures the inverse likelihood of the
i-th pixel taking the label x;, and P(xi,xj) means the pairwise po-
tential, which measures the cost of assigning labels x;, x; to i-th
pixel, j-th pixel simultaneously [43].

In our model, we use Eq. (2) as unary potential, where L(x;) is
the label assignment probability at the i-th pixel as computed by
our neural networks [44].

U(x;) = —logL(x;) (2)
The pairwise potential is defined as Eq. (3),

M
P(xi.xj) = ¢ (xi.x;) 3 0 ™k™ (£, ) 2

m=1

k(fi. £;)

where ¢(x;,x;) is a penalty term on the labelling [42]. As ex-
plained in [9], ¢(x;, x;) is given by the Potts model. If the i-th pixel
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Table 2
A comparison of LCU-Net and U-Net-BI. Con2D is 2D convolution operation provided in Keras.
Model Model
Block Filter Number Block Filter Number
U-Net-BI LCU-Net U-Net-BI LCU-Net
Con2D(3,1) Con2D(3,1)
Con2D(3,3) Con2D(1.3) Con2D(3,3) Con2D(1.3)
Con2D(3,1) Con2D(3,1)
Block 1 & Block 9 Con2D(5,5) Con2D(1.3) 16 Block 2 & Block 8 Con2D(5,5) Con2D(1.3) 32
Con2D(3,1) Con2D(3,1)
Con2D(7,7) Con2D(13) Con2D(7,7) Con2D(13)
Con2D(1,1) Con2D(1,1) Con2D(1,1) Con2D(1,1)
Con2D(3,1) Con2D(3,1)
Con2D(3,3) Con2D(13) Con2D(3,3) Con2D(13)
Con2D(3,1) Con2D(3,1)
Block 3 & Block 7 Con2D(5,5) Con2D(1,3) 64 Block 4 & Block 6 Con2D(5.5) Con2D(1,3) 128
Con2D(3,1) Con2D(3,1)
Con2D(7,7) Con2D(13) Con2D(7,7) Con2D(13)
Con2D(1,1) Con2D(1,1) Con2D(1,1) Con2D(1,1)
Con2D(3,1)
Con2D(3,3) Con2D(1.3)
Con2D(3,1)
Block 5 Con2D(5.5) Con2D(1,3) 256
Con2D(3,1)
Con2D(7,7) Con2D(1.3)
Con2D(1,1) Con2D(1,1)

¥ s
) = )
» < »
’ ¥
Segmentation Result Dense CRF Segmentation Result
of LCU-Net of LCU-Net+

Fig. 9. The workflow of Dense CRF for EM image segmentation post-processing. The network with Dense CRF as post-processing is abbreviated as Net+, such as LCU-Net
with Dense CRF as post-processing is abbreviated as LCU-Net+.
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and the j-th pixel have the same label, the penalty term is equal
to zero; otherwise, it is equal to one. This function is shown as
Eq. (4).

$(xi.x)) = {‘1’ " ;ij (4)

As Eq. (3) shows, each k(™ is the Gaussian kernel, which is de-
pends on the feature vectors f;, f; of the i-th pixel and the j-
th pixel, and is weighted by @™. In [9], k(f;. f;) uses contrast-
sensitive two-kernel potentials, defined in terms of the color vec-
tors [; and I; and positions p; and p;. It is shown as Eq. (5).

i— 2 L—1L |2
k(fiﬂfj):wl exp (_ | pi Dy Il _ Il I ]” )

202 205

appearance kernel

. |2
+w2exp(” pi—pj II> (5)

2
ZUy

smoothness kernel

The first appearance kernel depends on both pixel positions
(denoted as p) and pixel color intensities (denoted as I). The sec-
ond smoothness kernel only depends on pixel positions. The pa-
rameters oy, og and o, control the scale of Gaussian kernels. The
first kernel forces pixels with similar color and position to have
similar labels, while the second kernel only considers spatial prox-
imity when enforcing smoothness [44].

4. Experiments
4.1. Experimental settings

4.1.1. Image dataset

In our work, we use Environmental Microorganism Dataset 5th
Version (EMDS-5), which is a newly released version of EMDS se-
ries [45], containing 21 classes of EMs. Each EM class contains 20
original microscopic images and their corresponding ground truth
(GT) images. Since the microscopic images have multiple scales,
we convert all the image sizes into 256 x 256 pixels uniformly, as
shown in Fig. 10.

4.1.2. Training, validation and test data setting

We randomly divide each class of EMDS-5 into training, vali-
dation, and test data sets in a ratio of 1:1:2. Thus, we have 105
original images and their corresponding GT images for training and
validation, respectively, and there are 210 original images for test-
ing.

Furthermore, in the training process, data augmentation can
effectively improve the lack of training images. Considering the
method proposed in [30] and our pre-tests, we augment the 105
training images with rotations of 0, 90, 180, and 270 degrees,
which result in 105 x 4 = 420 images. After that, these rotated im-
ages are flipped over by the mirror, and 420 x 2 = 840 images are
obtained.

4.1.3. Experimental environment

The experiment is conducted by Python 3.6.8 in Windows
10 operating system. The models we use in this paper are
implemented by Keras 2.24 [46] framework with Tensorflow
1.12.0 [47] as the backend. Our experiment uses a workstation
with Intel(R) Core(TM) i7-8700 CPU with 3.20GHz, 32GB RAM, and
NVIDIA GEFORCE RTX 2080 8GB.
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Table 3
The definitions of evaluation metrics.

Metric Definition Metric Definition
i ica — 2x|Verea NVar| — Verea NVarl
Dice Dice = o verd Jaccard Jaccard = e v

TP
TP+FN

1 Weea (et
VOE =1 — g very

Precision Precision = & Recall Recall =

TP+FP

Accuracy Accuracy = iy VOE

4.1.4. Hyper parameters

The segmentation task is to predict the individual pixels
whether they represent a point of interest (foreground EMSs) or
the background. Thus, the task can be seen as a pixel-level binary
classification. Hence, as the loss function of the network, we take
the binary cross-entropy function and minimize it [48]. The binary
cross-entropy loss for the image is defined as Eq. (6).

Li(X.Y.Y) ==Y ilog) + (1 —y;) log(1 — &) (6)
ieX

In Eq. (6), for the image X, Y is the corresponding GT image,
and Y represents the predicted segmentation result. For the i-th
pixel in image X, the network predicts y;, whereas the GT value in
the model is y; [48].

For a batch with N images inside, the loss function J; is defined
by Eq. (7).

N
h= 5 LK) (7)
i=1

Besides, we use Adam optimizer, which can dynamically ad-
just the learning rate in the training process [49], with 1.5 x 10~
learning rate and set the batch size to 2 in our training process. As
the loss and accuracy curves of these models are shown in Fig. 11,
after 40 iterations, the loss and accuracy curves level off. Therefore,
considering the computational performance of the workstation, we
finally set 50 epochs for training.

4.2. Evaluation metrics

To compare the performance of various methods, different met-
rics are used to evaluate the segmentation results. In our previous
work [2], Recall and Accuracy are used to measure the segmenta-
tion results. Besides that, we further employ Dice, Jaccard, Preci-
sion, and VOE (volumetric overlap error) to evaluate the segmen-
tation results.

The Dice coefficient [50] is a widely used metric to evaluate
segmentation performance. In addition to the comparison between
predicted results and GT images, the Dice is usually used to mea-
sure reproducibility, and it is mathematically equivalent to F1-
score [51]. The Jaccard [52], also named the IoU (intersection over
union), is defined as the intersection between two sets divided
by their union [51]. Recall measures the portion of positive pixels
(foreground) in the ground truth images that are also identified as
positive pixels by the segmentation results [51]. Nevertheless, we
cannot judge the segmentation results only according to the value
of Recall. The reason is well discussed in Section 4.3.2. Precision re-
flects the proportion of the real positive pixels among the positive
pixels predicted by the model. Accuracy measures the sum of the
portions of positive pixels (foreground) and negative pixels (back-
ground) in the GT images that are also identified as positive and
negative in the segmentation images. VOE (volume overlap error)
is the complement of the Jaccard coefficient [53].

The definitions of these evaluation metrics are provided in
Table 3. Vpeq represents the foreground predicted by the model.
Vot means the foreground in the GT image. TP (True Positive), FN
(False Negative), FP (False Positive), and TN (True Negative) are
concepts in the confusion matrix, and to facilitate understanding,
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(a) Original Images

Arcella Aspidisca Colpoda Stentor Euglypha
Paramecium Actinophrys Ceratium Siprostomum

K.Quadrala Gonyaulax Gymnodinium Euglena Phacus Stylonychia Codosiga
(b) Ground Truth Images

Fig. 10. Examples of the images in EMDS-5. (a) shows the original EM images and (b) provides the corresponding GT images.
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Fig. 11. The loss and accuracy curves of training process.

we provide a visual illustration in Fig. 12. The red and green masks From the metrics shown in Table 3, the higher the values of the
represent the foregrounds of the GT images and LCU-Net+ segmen- first four metrics (Dice, Jaccard, Precision, Recall, and Accuracy) are,
tation results, respectively, and the yellow masks are the overlap- the better the segmentation results are. On the contrary, the lower
ping parts of them. Meanwhile, the red, green, and yellow masks the value of the final metric (VOE) is, the better the segmentation
also represent FN, FP, and TP in the confusion matrix, respectively, result is.

and the regions without any mask in the image represent TN.
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Fig. 12. The visual illustration on TP, FN, FP, and TN used in confusion matrix with examples of EM images.

Table 4
The memory and time costs of U-Net, U-Net-BI and LCU-Net.
Time Cost
Model Memory Cost . - N
Training Time Average Test Time
U-Net 372,551,680 Byte (355 MB) 2145.38s (35.76min) 0.05s
U-Net-BI 426,868,736 Byte (407 MB) 4694.09s (78.24min) 0.13s
LCU-Net 108,560,384 Byte (103 MB) 2191.25s (36.52min) 0.15s

4.3. Evaluation of segmentation methods

To prove the effectiveness of the proposed LCU-Net method
for EM image segmentation, we compare its segmentation results
with other classical and state-of-the-art methods mentioned in
Section 2.

4.3.1. Evaluation of different BLOCKs

In this part, we make a comparison between BLOCK-I and
BLOCK-IL. To this end, we carry out a series of experiments on U-
Net, U-Net-BI, and LCU-Net.

Evaluation of Memory and Time Costs To compare the memory
and time costs among U-Net, U-Net-Bl, and LCU-Net, we provide
the details in Table 4.

From Table 4, we can find that the memory cost of U-Net is
355 MB, the training time of U-Net is around 36 minutes for 840
EM images, and the average testing time is 0.05s for each test im-
age. In contrast, the memory cost of LCU-Net is significantly re-
duced to 103 MB. From Table 4, we can also find that U-Net and
LCU-Net have closed training time around 36 minutes. Further-
more, the proposed LCU-Net has only 0.1s test time longer than
that of U-Net. Therefore, in contrast to U-Net, the LCU-Net saves
70.99% memory cost and has very close training time. Although
the average test time is 0.1s longer than U-Net, the difference is
acceptable in the practical EM segmentation work.

Evaluation of Segmentation Performance To compare the overall
performance of the segmentation methods, we provide the average
evaluation indices in Fig. 13.

From Fig. 13, we can find that U-Net achieves good perfor-
mance, but the results of U-Net-BI and LCU-Net are even better. Es-
pecially, compared with U-Net, the average Dice value of LCU-Net
is increased by around 1.5%; the average Jaccard value of LCU-Net
makes 1.79% improvement; the improvement of the average Recall
value made by LCU-Net is 5.14%; for the average Accuracy, the im-
provement of LCU-Net is 0.15%; the average VOE of LCU-Net is re-
duced by 2.32%. Hence, from these evaluation indices by LCU-Net,
the overall segmentation performance is effectively improved. Al-
though U-Net-BI makes slightly better segmentation performance
than LCU-Net, the memory cost of LCU-Net is only about a quar-
ter of that of U-Net-BI. Besides, the segmentation performance of
LCU-Net is also better than the original U-Net.

To further improve the segmentation performance, we apply
Dense CRF as the post-processing after obtaining the segmenta-

tion results of our networks. Dense CRF effectively improves the
segmentation performance. We provide the average evaluation in-
dices of U-Net+ (U-Net with Dense CRF as post-processing), U-Net-
Bl+ (U-Net-BI with Dense CRF as post-processing), and LCU-Net+
(LCU-Net with Dense CRF as post-processing) in Fig. 13. We can
find that Dense CRF effectively assists these networks to further
improve the segmentation performance from Fig. 13. Besides, U-
Net-BI+ and LCU-Net+ still perform better than U-Net+.

After evaluating the overall performance of these methods, we
also provide the detailed indices and examples of the segmentation
results of each EM category under these methods in Table 5 and
Fig. 14, respectively.

From Table 5 and Fig. 14, we can find that all the segmenta-
tion results of the improved methods can cover the main parts
of the EMs. Besides, these improved methods have better EM de-
tail acquisition capabilities than U-Net. The problems of under-
segmentation and over-segmentation are much less in the seg-
mentation results by these improved methods. Thus, because of
the minimum memory cost, low time cost, and good segmenta-
tion performance with Dense CRF as the post-processing, we apply
LCU-Net+ in the EM image segmentation task.

4.3.2. Comparison with other methods

In this part, we conduct some comparative experiments on
the task of EM image segmentation. We mainly adopt some rep-
resentative segmentation methods mentioned in Section 2.1 and
Section 2.2, including Otsu (threshold-based method), Canny
(edge-based method), Watershed (region-based method), Re-
gion Growing (region-based method), MRF (unsupervised learn-
ing method), k-means (unsupervised learning method), and Seg-
Net [54] (supervised learning method). Because the results are of-
ten insufficient, we need some post-processing for the results. For
example, when we use edge-based methods to perform the seg-
mentation task, it often needs post-processing, which includes di-
lation, erosion, and so on, to assist it [55]. To show better segmen-
tation results of these methods, we uniformly used post-processing
operations, which include dilation, erosion, flood-fill, and saving
the largest region, to improve the segmentation results [55]. To
evaluate these methods’ overall performance, we provide the av-
erage evaluation indices of these methods in Fig. 15.

From the average indices in Fig. 15, we can find that the re-
sults of our methods are better than that of other methods. How-
ever, we can see that the Recall values in Fig. 15(d) are higher than
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Table 5
The average segmentation indices for each EM category. For short, Region Growing, Dice, Jaccard, Precision, Recall, Accuracy, and VOE are abbreviated to RG, D, ], P, R, A, and V, respectively. (In %).

Evaluation Metrics

Evaluation Metrics

Evaluation Metrics

EM  Methods EM Methods EM Methods
D ] P R A \Y D ] P R A v D ] P R A \
U-Net 7180 5747 95.19 59.13 97.53 42.53 U-Net 94.87 91.18 9858 9254 97.50 8.82 U-Net 94.06 88.86 96.24 92.19 99.70 11.14
U-Net-BI 72.00 57.61 91.10 60.98 97.42 4239 U-Net-BI 96.63 93.69 9567 9794 98.15 6.31 U-Net-BI 93.38 87.66 92.40 94.61 99.64 12.34
LCU-Net 7217 57.82 9249 60.76 97.50 42.18 LCU-Net 97.31 9498 96.15 98.78 9849 5.02 LCU-Net 94.28 89.29 9532 9344 99.71 10.71
U-Net+ 71.83 57.46 9530 59.27 97.52 42.54 U-Net+ 95.19 91.73 98.87 92.77 97.66 8.27 U-Net+ 93.97 88.74 94.88 9341 99.69 11.26
U-Net-Bl+ 7130 56.76 93.78 59.19 9741 43.24 U-Net-Bl+ 97.47 9524 9691 98.28 98.63 4.76 U-Net-Bl+ 93.02 87.09 9341 93.11 99.62 1291
LCU-Net+ 72.16 57.86 9580 59.52 97.57 42.14 LCU-Net+ 97.69 9569 9698 98.67 9871 4.31 LCU-Net+ 94.30 89.38 96.14 92.82 99.71 10.62
(a) Otsu 31.12 2488 32.60 81.96 4141 75.12 (b) Otsu 7332 6324 6426 98.64 7146 36.76 (c) Otsu 4.49 2.31 2.31 89.49 1431 97.69
Canny 2742 1937 19.54 99.16 36.52 80.63 Canny 7629 66.33 66.88 99.13 77.18 33.67 Canny 13.90 10.14 10.15 99.96 2533 89.86
Watershed 32.05 26.13 32.14 83.53 4412 73.87 Watershed 67.02 58.11 62.61 8535 7454 41.89 Watershed 1222 9.87 10.58 69.11 44.02 90.13
k-means 1473 10.85 13.04 67.74 4037 89.15 k-means 52.41 47.40 48.51 68.88 70.18 52.60 k-means 4.38 2.25 2.25 90.00 11.97 97.75
MRF 30.79 2417 26.05 95.69 3350 75.83 MRF 65.40 5731 5737 8997 63.60 42.69 MRF 437 224 2.24 90.00 12.80 97.76
RG 32.92 22,67 4243 7893 43.08 77.33 RG 87.22 81,51 8297 9852 8531 1849 RG 11.58 7.84 11.96 9567 12.16 92.16
SegNet 7180 57.21 90.94 61.09 97.42 42.79 SegNet 96.11 9296 96.41 9649 97.92 7.04 SegNet 9291 86.84 9346 9263 99.64 13.16
U-Net 48.83 3824 6233 4424 96.64 61.76 U-Net 8746 78.83 8599 91.19 9725 21.17 U-Net 5543 40.56 66.41 50.04 89.00 59.44
U-Net-BI 58.27 44.86 65.14 56.97 97.17 55.14 U-Net-BI 8430 7451 79.46 9414 97.62 2549 U-Net-BI 68.38 5290 69.14 70.82 90.67 47.10
LCU-Net 58.18 45.13 6440 61.85 96.83 54.87 LCU-Net 80.44 70.59 7879 9035 97.03 29.41 LCU-Net 63.30 48.02 6256 7142 87.94 51.98
U-Net+ 4833 37.89 5851 45.64 96.28 62.11 U-Net+ 87.49 7898 85.04 92,56 97.22 21.02 U-Net+ 60.79 4552 60.58 62.28 88.38 54.48
U-Net-Bl+ 58.16 4490 6549 57.02 97.12 55.10 U-Net-Bl+ 8638 77.74 8142 9520 98.09 22.26 U-Net-Bl+ 69.29 53.89 67.94 72.69 90.74 46.11
LCU-Net+  59.20 46.29 64.21 60.44 96.68 53.71 LCU-Net+ 8228 7293 79.88 91.74 9722 27.07 LCU-Net+ 64.01 4894 5886 76.74 87.11 51.06
(d) Otsu 4.49 2.32 2.32 90.00 1132 97.68 (e) Otsu 31.09 24.68 27.66 9645 29.63 7532 (f) Otsu 24.72 1475 1477 90.01 2298 85.25
Canny 7.08 3.76 3.83 96.78 1731 96.24 Canny 38.84 33.16 3321 9991 5024 66.84 Canny 36.87 23.56 23.67 9925 39.81 76.44
Watershed 7.11 4.17 11.19  62.70 41.28 95.83 Watershed 3594 28.92 33.82 8244 5859 71.08 Watershed 30.75 19.25 2236 81.74 3934 80.75
k-means 4.49 2.32 2.32 90.00 1133  97.68 k-means 1417 1011 1298 61.92 41.06 89.89 k-means 24.72 1475 1477 90.01 2299 85.25
MRF 4.67 241 241 90.00 13.17 97.59 MRF 27.95 2231 2264 96.18 30.01 77.69 MRF 2395 1440 1441 80.01 3232 85.60
RG 5.55 2.88 2.88 100.00 2.88 97.12 RG 19.71 1497 15.08 99.88 1520 85.03 RG 31.78 19.71 21.66 9585 2491 80.29
SegNet 56.59 44.05 62.00 56.77 96.48 55.95 SegNet 90.57 8342 86.77 9519 98.52 16.58 SegNet 61.32 46.01 5587 73.80 86.30 53.99
U-Net 90.11 8293 86.89 93.82 98.41 17.07 U-Net 92.77 8746 92.05 93.74 97.84 1254 U-Net 86.57 80.98 97.01 83.51 97.55 19.02
U-Net-BI 88.18 80.19 82.57 95.73 97.92 19.81 U-Net-BI 93.84 88.97 9247 9546 98.12 11.03 U-Net-BI 88.22 81.00 86.92 89.82 96.98 19.00
LCU-Net 88.43 80.20 81.22 98.08 98.06 19.80 LCU-Net 94.26 89.38 91.73 9733 98.11 10.62 LCU-Net 88.87 8190 86.46 91.67 96.93 18.10
U-Net+ 89.87 8256 85.07 95.79 98.28 17.44 U-Net+ 9299 87.83 91.77 9441 97.88 12.17 U-Net+ 90.37 8430 97.29 86.66 97.96 15.70
U-Net-Bl+ 88.53 80.59 82.10 97.21 97.99 19.41 U-Net-Bl+ 94.05 89.39 93.38 9490 98.19 10.61 U-Net-Bl+ 8899 8223 89.57 88.72 97.11 17.77
LCU-Net+ 88.96 81.04 82.03 98.21 98.16 18.96 LCU-Net+ 9459 90.00 92.73 96.97 9823 10.00 LCU-Net+ 89.38 8249 8847 90.88 97.01 17.51
(g) Otsu 4739 4179 4336 86.30 66.37 5821 (h) Otsu 4837 3858 3934 98.88 45.03 6142 (i) Otsu 70.77 6237 6810 91.17 8217 37.63
Canny 50.29 40.19 40.28 99.49 64.59 59.81 Canny 56.84 4571 4631 99.04 59.01 54.29 Canny 59.88 53.94 5463 68.78 89.70 46.06
Watershed 63.96 55.62 69.74 79.39 79.31 44.38 Watershed 64.85 55.60 69.83 8537 71.92 44.40 Watershed 69.53 5741 76.13 7335 9125 4259
k-means 5.90 3.46 4.22 26.19 73.90 96.54 k-means 14.27 8.53 8.53 50.00 50.66 91.47 k-means 7040 63.18 71.23 79.46 8832 36.82
MRF 3449 2647 26.74 86.95 50.06 73.53 MRF 49.80 40.69 40.90 90.44 48.86 59.31 MRF 62.29 5419 56.04 96.48 7224 4581
RG 1539 8.55 10.73 9294 1552 9145 RG 40.59 29.67 3155 97.73 33.01 7033 RG 61.43 50.09 66.63 83.11 66.07 49.91
SegNet 89.44 81.90 84.05 96.32 98.11 18.10 SegNet 92.58 86.66 91.45 94.02 97.60 13.34 SegNet 86.48 79.34 87.13 87.92 97.06 20.66
U-Net 91.36 8430 88.07 95.13 98.97 15.70 U-Net 88.48 8247 98.09 8370 9227 17.53 U-Net 8332 7321 9284 76.63 9691 26.79
U-Net-BI 90.49 82.89 85.56 96.26 98.56 17.11 U-Net-BI 9496 90.66 97.07 93.27 96.08 9.34 U-Net-BI 81.56 72.48 87.23 80.01 96.73 27.52
LCU-Net 92.39 8596 89.11 96.10 99.04 14.04 LCU-Net 90.90 84.57 98.02 86.44 9320 15.43 LCU-Net 8545 76,71 9399 81.18 97.56 23.29
U-Net+ 94.87 9030 9341 96.41 99.34 9.70 U-Net+ 8939 83.64 98.09 84.92 9291 16.36 U-Net+ 83.62 74.03 90.34 7937 96.84 2597
U-Net-Bl+ 93.97 88.79 92.71 95.52 99.02 11.21 U-Net-Bl+ 96,51 9341 98.05 9531 97.19 6.59 U-Net-Bl+ 81.60 72.11 89.23 79.57 96.65 27.89
LCU-Net+ 94.71 90.01 93.98 95.52 99.34 9.99 LCU-Net+ 92.08 8635 98.78 87.49 9395 13.65 LCU-Net+ 86.78 77.63 96.70 80.49 97.53 2237
(6) Otsu 40.02 3044 3581 92.00 49.12 69.56 (k) Otsu 62.33 47.70 4842 9831 53.08 5230 () Otsu 7138 5930 7737 7835 87.15 40.70
Canny 39.67 29.82 29.89 99.78 51.99 70.18 Canny 96.33 93.08 9433 98.69 97.26 6.92 Canny 81.01 70.90 7455 94.04 9534 29.10
Watershed 52.79 4633 53.16 81.29 69.19 53.67 Watershed 8131 70.81 93.14 7638 88.34 29.19 Watershed 58.03 44.56 81.04 49.56 92.10 55.44
k-means 26.83 21.05 2999 60.11 58.32 78.95 k-means 37.23 26,15 2725 6481 4637 73.85 k-means 4935 42778 5431 4628 92.75 57.22
MRF 39.99 3049 3055 99.77 49.66 69.51 MRF 7589 6549 68.13 9139 7499 3451 MRF 7141 6250 66.58 9517 7790 37.50
RG 17.96 1291 1349 99.26 1438 87.09 RG 86.09 79.67 81.82 93.89 86.27 2033 RG 4854 37.82 55.08 8221 5331 62.18
SegNet 88.80 80.08 82.95 95.92 98.62 19.92 SegNet 85.97 79.80 98.06 81.63 91.58 20.20 SegNet 81.47 71.89 7996 89.03 96.06 28.11

(continued on next page)
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Table 5 (continued)

EM  Methods Evaluation Metrics EM Methods Evaluation Metrics EM Methods Evaluation Metrics
D ] P R A \% D ] P R A \Y D ] p R A \Y

U-Net 88.76 80.63 9540 84.50 97.25 1937 U-Net 84.62 74.52 88.08 8331 97.76 2548 U-Net 93.06 87.23 9523 9136 97.38 12.77
U-Net-BI 91.02 83.78 91.55 91.03 97.67 16.22 U-Net-BI 81.60 72.46 82.87 80.83 9744 2754 U-Net-BI 93.07 8734 9284 93.66 9746 12.66
LCU-Net 89.14 8195 87.43 92.19 96.39 18.05 LCU-Net 84.86 75.70 88.70 83.73 97.96 24.30 LCU-Net 92.67 86.50 93.37 92.63 97.32 13.50
U-Net+ 91.46 84.65 9551 8838 97.86 15.35 U-Net+ 86.63 77.51 87.12 87.77 97.98 2249 U-Net+ 9343 87.89 9518 92.02 97.59 1211
U-Net-BI+ 92.23 85.80 9323 91.60 98.02 14.20 U-Net-Bl+ 83.60 74.85 83.06 84.45 9760 25.15 U-Net-Bl+ 9296 87.26 9396 9226 9746 12.74
LCU-Net+ 89.87 8324 88.76 92.61 9644 16.76 LCU-Net+ 85.68 76.69 89.49 84.58 98.06 23.31 LCU-Net+ 93.12 87.25 9514 91.62 9749 1275

(m) Otsu 51.66 41.92 4570 93.14 60.62 58.08 (n) Otsu 50.54 40.88 41.58 96.80 66.80 59.12 (o) Otsu 81.89 72.00 78.66 91.81 86.40 28.00
Canny 7296 5994 60.50 98.60 89.60 40.06 Canny 58.66 48.92 49.54 78.62 91.03 51.08 Canny 82.68 8444 8444 96.10 9633 15.56
Watershed 58.66 45.73 62.14 66.26 86.71 54.27 Watershed 50.63 41.24 5339 6244 87.21 58.76 Watershed 86.87 77.41 88.06 87.17 95.14 22.59
k-means 32.19 2488 2646 66.89 63.76 75.12 k-means 4326 3596 37.04 6748 81.26 64.04 k-means 53.16 45.87 5393 6156 77.84 54.13
MRF 46.34 37.67 45.09 6334 7034 6233 MRF 3739 28.75 2957 9329 4898 71.25 MRF 78.00 68.09 68.89 97.83 83.00 3191
RG 51.27 39.86 4521 92.88 54.15 60.14 RG 6498 57.03 69.86 86.28 71.19 4297 RG 58.39 46.76 56.30 90.00 56.66 53.24
SegNet 88.40 80.01 86.04 91.83 96.89 19.99 SegNet 7992 7145 7632 8524 96.59 28.55 SegNet 92.68 86.44 91.69 94.15 97.14 13.56
U-Net 89.80 8223 97.22 8441 97.59 17.77 U-Net 89.28 83.16 87.97 9422 9795 16.84 U-Net 93.08 87.27 98.93 88.16 95.07 12.73
U-Net-BI 92.89 87.08 97.77 8893 9827 1292 U-Net-BI 87.21 8041 8219 97.77 97.95 19.59 U-Net-BI 9523 9096 97.91 92.84 9647 9.04
LCU-Net 9298 87.18 97.57 89.15 9833 12.82 LCU-Net 86.19 80.22 83.02 9635 9734 19.78 LCU-Net 9418 89.07 97.92 90.85 9581 10.93
U-Net+ 90.04 82.64 97.17 8485 97.64 17.36 U-Net+ 88.65 8243 87.38 94.21 97.69 17.57 U-Net+ 93.71 8831 99.13 89.06 95.58 11.69
U-Net-BI+ 9190 8543 97.76 87.18 98.06 14.57 U-Net-BI+ 86.76 79.87 8343 9546 97.84 20.13 U-Net-Bl+ 94.89 9035 9851 91.69 9648 9.65
LCU-Net+ 92.40 86.18 97.74 8793 9822 13.82 LCU-Net+ 8494 7899 8292 9522 96.79 21.01 LCU-Net+ 9412 8899 98.57 90.18 95.82 11.01

(p) Otsu 58.89 48.05 57.65 77.64 75.02 5195 (q) Otsu 30.04 23,52 26221 97.30 29.84 7648 (r) Otsu 7325 63.89 7033 9331 68.78 36.11
Canny 65.46 54.89 56.50 97.17 77.66 45.11 Canny 68.81 60.51 6193 88.19 87.95 3949 Canny 9334 87.71 95,55 9157 9546 12.29
Watershed 83.95 76.86 86.78 89.09 8897 23.14 Watershed 75.71 7045 75.08 84.80 91.40 29.55 Watershed 90.56 83.16 91.75 90.27 93.60 16.84
k-means 35.76 29.06 36.01 52.81 73.97 7094 k-means 2288 16.54 1731 89.23 26.35 83.46 k-means 44,09 3565 41.06 6440 57.64 6435
MRF 72.88 62.65 7485 86.65 82.23 3735 MRF 71.57 62.06 67.63 93.71 80.57 3794 MRF 71.04 59.07 8340 7437 77.65 40.93
RG 66.66 5498 70.07 83.61 73.16 45.02 RG 3721 29.03 3623 9270 3578 70.97 RG 62.75 48.82 60.65 87.78 56.71 51.18
SegNet 9231 86.21 9529 9045 98.11 13.79 SegNet 8397 77.62 80.59 9635 96.64 2238 SegNet 93,57 88.03 97.22 90.54 9543 1197
U-Net 91.56 85.20 99.72 8543 9837 14.80 U-Net 80.01 68.72 97.60 70.06 93.57 31.28 U-Net 94.86 90.32 99.80 9049 97.52 9.68
U-Net-BI 95.03 90.82 9850 92.17 9894 9.18 U-Net-BI 89.79 8225 9745 8423 96.16 17.75 U-Net-BI 95.76 9195 9851 9321 97.85 8.05
LCU-Net 92.20 86.37 98.76 87.50 98.20 13.63 LCU-Net 87.07 7874 96.75 81.18 95.18 21.26 LCU-Net 96.44 93.18 98.44 9459 98.19 6.82
U-Net+ 91.61 85.18 99.71 8540 9835 14.82 U-Net+ 8143 70.60 97.82 71.89 9390 29.40 U-Net+ 94.64 8993 99.81 90.09 9746 10.07
U-Net-BI+ 93.63 8837 99.64 88.66 98.72 11.63 U-Net-BI+ 89.79 8230 98.73 83.22 96.17 17.70 U-Net-BI+ 94.71 90.08 98.99 9093 9743 9.92
LCU-Net+ 90.97 8436 99.15 85.12 97.99 15.64 LCU-Net+ 8732 79.11 97.64 80.82 9527 20.89 LCU-Net+ 9524 91.01 9899 9191 97.73 8.99

(s) Otsu 40.28 33.47 4085 81.99 4848 66.53 (t) Otsu 4584 37.62 5022 66.33 6549 6238 (u) Otsu 83.78 75.20 84.21 89.96 86.09 24.80
Canny 57.15 50.79 5333 97.16 61.44 49.21 Canny 65.65 55.66 59.43 95.10 74.53 4434 Canny 94.61 8995 92.67 9690 97.29 10.05
Watershed 63.62 56.80 7138 7532 81.57 43.20 Watershed 53.94 41.84 75.68 64.57 7345 58.16 Watershed 74.09 69.24 77.64 7137 90.15 30.76
k-means 40.64 3398 43.14 80.83 49.76 66.02 k-means 21.65 16.86 22.86 4363 6227 83.14 k-means 58.84 52.88 61.99 59.87 84.82 47.12
MRF 53.15 48.06 52.74 9529 5246 5194 MRF 63.25 5490 6843 7536 7229 45.10 MRF 7549 6762 68.60 9893 71.03 3238
RG 70.00 59.52 76.51 8298 7494 40.48 RG 69.03 58.15 77.54 79.05 76.89 41.85 RG 58.44 46.41 49.23 97.17 48.64 53.59
SegNet 91.79 85.61 97.23 8792 9832 14.39 SegNet 86.82 7832 97,58 7991 9513 21.68 SegNet 96.31 9292 98.17 9459 98.13 7.08
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Fig. 13. The evaluation indices of U-Net, U-Net+, U-Net-BI, U-Net-BI+, LCU-Net and LCU-Net+. The blue columns show the evaluation of segmentation results generated
by the networks. The red columns show the evaluation of segmentation results generated by the networks with Dense CRF as post-processing. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

the Recall values generated by U-Net, U-Net-BI, LCU-Net, and LCU-
Net+. This is because some of the segmentation results by other
methods have many background parts partitioned into the fore-
ground [2]. What is more serious is that the whole picture is par-
titioned into the foreground. We can easily find this situation from
Fig. 14. From the definition of Recall shown in Table 3, we can
realize that as long as the foreground in the segmentation result
contains the entire real foreground in GT, the value of Recall is
1 regardless of whether the over-segmentation problem is exist-
ing or not. Therefore, when we evaluate the segmentation results,
we should not judge them by the value of Recall alone. From the
above, we should consider multiple indices when we evaluate the
segmentation results.

To observe the performance of these methods better, we pro-
vide not only the overall average indices in Fig. 15 but also the de-
tailed indices of the segmentation results of each category of EMs
under these methods in Table 5. Besides, we also provide examples
of the segmentation results under these methods in Fig. 14.

4.3.3. Comparison with local-Global CRF segmentation

In our previous work of Local-Global CRF [2], we use the EMDS-
4 data set with 20 categories of EMs. In contrast to EMDS-4, we
have one more EM category (Gymnodinium) in EMDS-5 in this pa-
per. Therefore, we evaluate the segmentation results obtained by
LCU-Net+ without Gymnodinium here. Furthermore, there are six

12

models for segmentation in [2] to compare: Per-pixel RF (noEdges),
CRF with Potts pairwise potentials (Potts), CRF with contrast-
sensitive Potts model (PottsCS), fully connected CRF with Gaussian
pairwise potentials (denseCRF), fully connected CRF on segmenta-
tion results by the original DeepLab method [44] (denseCRForg),
fully convolutional network (FCN). Considering the evaluation met-
rics used in our previous work, we use Average Recall and Overall
Accuracy to evaluate the performance of the segmentation results
in [2]. The Average Recall and Overall Accuracy values of LCU-Net+
and our previous models are shown in Fig. 16.

From Fig. 16, we can find that compared with our previous
models, the Average Recall is improved by more than 7%, and the
Overall Accuracy increases by at least 1%. From this, we can realize
that the proposed LCU-Net+ in this paper performs better than the
models in our previous work [2].

4.3.4. Repeatability tests

In the repeatability tests, we add four more repeatability LCU-
Net+ experiments based on the original experiment. The overall
evaluation indices of these segmentation results are provided in
Table 6. From Table 6, we find that all five LCU-Net+ experiments
perform better than the original U-Net and the evaluation indices
of the five experiments are approximate. Therefore, it is proved
that LCU-Net+ has good stability and performance on the EM im-
age segmentation task.



J. Zhang, C. Li, S. Kosov et al. Pattern Recognition 115 (2021) 107885

(b) Arcella

(c) Aspidisca

(d) Codosiga

(e) Colpoda
| o o | o 0 0 R
I’ puit) ",, i ‘,/; ) B y,'»'? L o) BReouic ) i) el | B L
(f) Epistylis

(g) Euglypha

e e e e e R P P RS S

(i) Rotifera

.

(j) Vorticella

(k) Noctiluca

() Ceratium

(m) Stentor

(n) Siprostomum

(h) Paramec:um

(o) K.Quadrala

ENNEEE!

(p) Euglena

(a) Gymnod:mum

O
M
\

(r) Gonyaulax

(s) Phacus

(t) Stylonych/a

€ @0 @9 @) @) @) @) @) @) @) @) @) @) @

(u) Synchaeta

Fig. 14. An example of GT and segmentation results for each EM category by U-Net, U-Net-BI, LCU-Net, U-Net+, U-Net-BI+, LCU-Net+, Otsu, Canny, Watershed, k-means, MRF,
RegionGrowing and SegNet (from the left to the right). The red regions are GT and the segmentation results by different methods. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

13



Pattern Recognition 115 (2021) 107885

J. Zhang, C. Li, S. Kosov et al.

%VT'06 we—————
%0T L8 =—
%LS'9 v—
%SE IV —
%96°6C
%6L'TO  n—
%T6'CS  m—
%CE'QlY  —

%VL 6L v——
%V6 L1 —
%CS'8E mm——

%SV CY —
%E6°'SC -
%0567 ——
%817 TS e—
%Cy' 07 —

%ET LS w——
%0L°G8 n—
%09 LYy —
%87°0G  —
%L6'TC
%6L°LS  —
%6569  n——
%788V  n—

©

j—

48]

Yy 3
%A\\V (48]
m.@@ —
~° 3 sy
Sy =
00@ 7
«v@ Q
@)

X2
9, ®
%,

y, ©
~0© &,m» ~

%9C'0C wm
%90°CC wmm

%8V’ T n—
%SS°LS  —
%L0 VL —
%0S'0S  —
%CS 8V —

%8G°6S m—

%1696  n———
%9596 ' —
%EQ LY v—
%E0'LS  —
%LY7°9S  —
%VE QL  ——
%LE 0L v—

%TE'GS  m——

%CT /8 m——
%€ /8 n———

%/6°06 m———

%7899 m—
%97°9/ n——
%6676 m——

%CS'63 me——

e@wo
o
&w

2 %, )

(f) VOE

e%ms
-
&w

2
o,
¥,
Aw@ @\
v7
O

(e) Accuracy

(d) Recal

Fig. 15. The average evaluation indices of Otsu, Canny, Watershed, k-means, MRF, RegionGrowing (RG), SegNet and LCU-Net+ based EM image segmentation.
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The evaluation indices of Repeatability Tests. For short, Repetition is abbreviated to Re. (In %).

Table 6

VOE

Accuracy
96.91

Precision Recall

Jaccard
79.74
79.60
79.94
79.69
79.95
77.42

Dice

Model

20.26
20.40
20.06

20.31

87.12

90.14

87.13

LCU-Net+

97.05
97.00
97.00
96.94
96.76

84.83

91.78
88.97
89.46
88.90
91.41

87.12

LCU-Net+ (Re 1)

87.96
88.03
88.51

87.15

LCU-Net+ (Re 2)

87.12

LCU-Net+ (Re 3)

20.05

87.27

LCU-Net+ (Re 4)

U-Net

22.58

82.27

85.24
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5. Conclusion and future work

In this paper, we propose LCU-Net for the EM image segmen-
tation task. LCU-Net is a CNN based on U-Net, Inception, and
concatenate operations. Furthermore, the Dense CRF is applied as
post-processing to obtain global information to enhance the seg-
mentation results (LCU-Net with Dense CRF as post-processing is
abbreviated to LCU-Net+). The proposed method not only performs
better than the original U-Net but also reduces the memory cost
from 355 MB to 103 MB. In the evaluation of segmentation re-
sults by LCU-Net+, the values of evaluation indices Dice, Jaccard,
Precision, Recall, Accuracy, and VOE (volume overlap error) are
87.13%, 79.74%, 90.14%, 87.12%, 96.91%, and 20.26%, respectively.
Compared with U-Net, the these indices are improved by 1.89%,
2.32%, 4.84%, and 0.14%, respectively, and Precision and VOE is de-
creased by 1.27% and 2.32%. Besides, compared with our previous
Local-Global CRF model in [2], the performance of segmentation
results is significantly improved.

In the future, we plan to increase the number of images in our
data set and optimize the time cost of LCU-Net to improve seg-
mentation performance. Meanwhile, we will also consider more
new methods in our future work. For example, the strategy used
in AdderNet [56] is considered to optimize our network, where in-
stead of multiplication operation, addition operation is applied to
reduce the computational complexity of CNNs. We also consider
using the fuzzy binarization proposed in [57] to produce multiple
image layers and use them to train separate deep learning models
to improve segmentation performance. Besides, we can apply GAN
to perform the data augmentation task [58].
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