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a b s t r a c t 

In this paper, we propose a novel Low-cost U-Net (LCU-Net) for the Environmental Microorganism (EM) 

image segmentation task to assist microbiologists in detecting and identifying EMs more effectively. The 

LCU-Net is an improved Convolutional Neural Network (CNN) based on U-Net, Inception, and concatenate 

operations. It addresses the limitation of single receptive field setting and the relatively high memory 

cost of U-Net. Experimental results show the effectiveness and potential of the proposed LCU-Net in the 

practical EM image segmentation field. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

In industrialized countries, industrial pollution has been threat- 

ning human health and environments. Thus, different methods of 

ontrolling, reducing, and eliminating pollution are being estab- 

ished. The methods of eliminating environmental pollution gener- 

lly include three major categories: chemical, physical, and biolog- 

cal approaches. By contrast, the biological method is more harm- 

ess and efficient [1] . Environmental Microorganisms (EMs) are very 

iny living beings in our surroundings, which are natural decom- 

osers and indicators. For example, Actinophrys can digest the or- 

anic waste in sludge and increase the quality of freshwater; Ro- 

ifera can decompose rubbish in the water and reduce eutrophica- 

ion. Therefore, EM research plays a significant role in managing 

nvironmental pollution [2] , and the identification of EMs is the 

asic step for related research. 

Generally, there are four traditional types of EM identifica- 

ion methods. The first is the “chemical method”, which is highly 
� This work is supported by the “National Natural Science Foundation of China”

No. 61806047). 
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ccurate but often results in secondary pollution of chemical 

eagents [3] . The second strategy is the “physical method”. It also 

as high accuracy but requires expensive equipment [3] . The third 

s the “molecular biological method”, which distinguishes EMs by 

equence analysis of gene [4] . This strategy needs expensive equip- 

ent, massive time consumption, and professional researcher. The 

ourth is the “morphological method”, which needs a skillful oper- 

tor to observe EMs under a microscope and give the EM identities 

y their shape characteristics [1] . Hence, these traditional methods 

ave their respective disadvantages in practical work. 

Due to the drawbacks of the traditional methods and the excel- 

ent performance on segmentation tasks of CNNs, the widely used 

-Net [5] is firstly considered in our work. The training strategy 

sed in U-Net relies on the strong use of data augmentation to use 

he available annotated samples more efficiently [5] . Besides, the 

nd-to-end structure used in U-Net can retrieve the shallow infor- 

ation of the network [5] . Therefore, U-Net provides the high pos- 

ibility to achieve high accuracy with our small EM training data 

et. 

The cost and reliability of CNN are extremely important [6] . 

owever, the adaptability of U-Net is limited by its single recep- 

ive field setting, and the memory cost of U-Net is relatively high 

n practical work, so we propose a novel Low-cost U-Net (LCU-Net) 

https://doi.org/10.1016/j.patcog.2021.107885
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107885&domain=pdf
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Fig. 1. The workflow of the proposed EM image segmentation method using LCU-Net. 

f

i

b

I

t

f

c

a

L

p

g

a

t

t

t

o

t

i

w

d

s

p

2

m

c

r

2

b

t

Table 1 

Microorganism image segmentation methods. 

Category Subcategory Related work 

Classical 

Threshold-based Methods [11–15] 

Edge-based Methods [16–19] 

Region-based Methods [20–23] 

Machine Learning 
Unsupervised Methods [24–26] 

Supervised Methods [2,27–30] 
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or the EM image segmentation task to assist microbiologists to 

dentify EMs more effectively. The LCU-Net is an improved CNN 

ased on U-Net [5] , Inception [7] , and concatenate operations [8] . 

n contrast to the original U-Net, it increases the overall segmenta- 

ion performance and reduces the memory cost. Besides, we apply 

ully connected Conditional Random Field (Dense CRF) [9] , which 

an obtain the spatial information between pixels in an image, 

s a post-processing step to enhance the segmentation result of 

CU-Net. The workflow of the proposed LCU-Net segmentation ap- 

roach is shown in Fig. 1 . 

In Fig. 1 , (a) Training Images: The training set contains 21 cate- 

ories of EM images and their corresponding ground truth (GT) im- 

ges. (b) Data Augmentation: To solve a small training set problem, 

he size of data set is increased. (c) Training Process: LCU-Net is 

rained to perform the segmentation task and generate a segmen- 

ation model. (d) Test Images: The test set contains 21 categories 

f EM images. (e) Post-processing: Dense CRF is used to enhance 

he segmentation results by spatial information among pixels in an 

mage. 

The main contributions of this paper are as follows: 

• We propose LCU-Net for EM image segmentation to assist mi- 

crobiologists, and it achieves better segmentation performance 

than that of U-Net. 

• LCU-Net newly applies thinner convolution filters and concate- 

nate operations to reduce the memory cost to less than one- 

third of U-Net. 

The structure of this paper is as follows: Section 2 is the related 

ork about existing EM segmentation methods. Section 3 gives a 

etailed description of LCU-Net. Section 4 introduces experiment 

ettings, evaluation methods, and results. Section 5 closes this pa- 

er with a brief conclusion. 

. Related work 

In this section, related works about microorganism image seg- 

entation techniques are briefly summarized in Table 1 , including 

lassical and machine learning methods. For more details, please 

efer to our previous survey in [10] . 

.1. Classical segmentation methods 

As shown in Table 1 , threshold-based, edge-based, and region- 

ased methods are usually used for the EM image segmentation 

ask. The basic idea of threshold-based methods is to find out 
2 
he optimal threshold value of an image first and then binarize 

his image with the threshold value [31] . Otsu thresholding algo- 

ithm [32] is one of the most representative threshold-based meth- 

ds. Edge detection methods transform an original image into an 

dge image benefiting from the changes of gray tones in the im- 

ge [33] , such as the Canny edge detection method [34] . Region- 

ased methods divide the entire image into subregions, such as the 

atershed algorithm [35] . 

The works [11–15] use different threshold-based methods for 

icroorganism image segmentation. For instance, [11] shows a 

omparison between threshold-based segmentation methods for 

valuating biomass distribution in heterogeneous biofilms. The last 

esult shows that the iterative selection method is superior. In [14] , 

ifferent algorithms based on Otsu thresholding are applied for the 

egmentation of floc and filaments to enhance the monitoring of 

ctived sludge in wastewater treatment plants. 

The works [16–19] use edge-based microorganism image seg- 

entation methods. For example, a segmentation work, which uses 

anny as the basic step, is introduced to identify individual mi- 

roorganisms from a group of overlapping bacteria in [16] . In [19] , 

 segmentation method based on active contour is proposed to 

egment large size images of zoo-planktons. 

The works [20–23] use region-based methods for microorgan- 

sm image segmentation. For example, in [20] , the segmentation is 

erformed on gray-level images using a marker controlled water- 

hed method. In [22] , after converting the color mode and using 

orphological operations to denoise, a seeded region-growing wa- 

ershed algorithm is applied for segmentation. 

.2. Machine learning based segmentation methods 

As shown in Table 1 , the machine learning methods for mi- 

roorganism image segmentation are grouped into two categories: 

nsupervised and supervised learning. There are some representa- 
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Fig. 2. The network structure of U-Net. 
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ive unsupervised methods for microorganism image segmentation, 

uch as k -means [36] and Markov Random Field (MRF) [37] . Be- 

ides, U-Net [5] is one of the most representative supervised seg- 

entation methods for microorganism image segmentation. 

The works [24–26] use unsupervised methods. For example, 

24] evaluates clustering and threshold segmentation techniques 

n tissue images containing tuberculosis bacilli. The final result 

hows that k -means clustering ( k = 3 ) is outstanding. In [25] , a

omparison between CRFs and region-based segmentation meth- 

ds is presented. The final result shows that these two kinds of 

icroorganism segmentation methods have an average recognition 

ate higher than 80% . 

The related works [27–30] use supervised methods in their 

orks. For example, [29] proposes a segmentation system to mon- 

tor the algae in the water. First, image enhancement (sharpening) 

s applied using a Retinex filtering technique. Then, segmentation 

s done by using the Support Vector Machine (SVM). In [30] , Rift 

alley Virus is the segmentation subject. Because of the insuffi- 

ient data set, they use data augmentation to assist U-Net in the 

egmentation work. 

In our previous work [2] , a supervised approach named Local- 

lobal CRF for EM image segmentation is proposed. VGG-16 is 

rained first with EM images to generate pixel-level and global- 

evel features, then these features are used to train Random Forest 

RF) classifiers, and after that, these trained RF classifiers are used 

s unary potentials by a CRF model. Finally, with the pairwise po- 

entials, the CRF model is applied to perform the EM image seg- 

entation task. 

We find that few existing studies use neural networks for mi- 

roorganism image segmentation from our investigation of exist- 

ng methods. Since our data set contains 21 EM classes, the im- 

ges of different EM classes vary greatly. Therefore, methods like 

tsu, Canny, k -means, and other methods may not perform well. 

esides, in recent years, with the extensive use of neural networks 

n image segmentation, image segmentation performance has been 

reatly improved. Therefore, U-Net, one of the most representative 

eural networks in image segmentation, is first considered in our 

ork. 
3 
. LCU-Net based EM image segmentation method 

.1. LCU-Net 

Although U-Net is widely used, its adaptability is limited by its 

ingle receptive field setting, and its memory cost is also relatively 

igh in practical work. To address U-Net’s limitation, we propose 

CU-Net, a CNN based on U-Net [5] , Inception-V3 [7] , and concate- 

ate operations [8] . 

.1.1. Basic knowledge of U-Net 

As the structure is shown in Fig. 2 , U-Net is a CNN that is ini-

ially used to perform the microscopic image segmentation task. 

he training strategy of U-Net relies on the strong use of data aug- 

entation to make more effective use of the available annotated 

amples. [5] . Besides, the end-to-end structure of U-Net can re- 

rieve the shallow information of the network [5] . 

The structure of U-Net is symmetrical, consisting of a contract- 

ng path (left side) and an expansive path (right side) [5] . In the

ontracting path, each downsampling step contains a sequence of 

wo 3 × 3 convolution operations (each has a rectified linear unit 

ReLU)) followed by a max-pooling operation with the size of 2 × 2 

nd stride of 2 pixels. Pooling operation with the stride of 2 pix- 

ls can change the feature map’s size into half of the original. 

n the contracting path, the downsampling step is repeated four 

imes, and as the number of repetitions increases, the number of 

onvolution filters increases by twice. As a result, the number of 

eature map channels is double. In the expansive path, there are 

hree main operations in each upsampling step. The first is 2 × 2 

p-convolution operation (a 2 × 2 upsampling operation followed 

y a 2 × 2 convolution operation). The second is copy and con- 

atenate. It copies the feature map generated by the correspond- 

ng layer from the contracting path and connects it with the fea- 

ure map generated from up-convolution. This operation can help 

he network retrieve the spatial information lost by pooling opera- 

ions [38] . The third operation is a sequence of two 3 × 3 convolu- 

ion operations (each has a ReLU). The upsampling step is repeated 

our times. The segmentation result is generated by the network’s 
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Fig. 3. The strategies used by Inception-V2 and Inception-V3 to replace the big filter in the original Inception structure. 

Fig. 4. An example of EM images with multiple scales. 

Fig. 5. The structure of BLOCK-I. 
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nal layer, a 1 × 1 convolution operation with an activation func- 

ion named Sigmoid. 

.1.2. Basic knowledge of inception 

The original Inception, which jointly uses filters of different 

izes ( 1 × 1 , 3 × 3 , and 5 × 5 ), is proposed in GoogleNet [39] . Due

o the utilization of these filters, Inception can adapt to multi- 

cale objects. However, there are also some disadvantages, such 

s, the increasing of parameters, overfitting, and vanishing gradi- 

nt. To address these problems, Inception-V2 combines a couple of 

 × 3 convolution filters to replace a 5 × 5 convolution filter [7] . 

s shown in Fig. 3 (a) and 3 (b), a 5 × 5 filter and a sequence of

wo 3 × 3 filters have the same receptive fields, where the for- 

er has more parameters than the latter [7] . For further optimiza- 

ion, Inception-V3 proposes a better approach, which combines a 

 × N convolution filter and a N × 1 convolution filter instead of a 

 × N convolution filter [7] . As shown in Fig. 3 (c) and 3 (d), a N × N

lter and a sequence of 1 × N and N × 1 filters have the same 

eceptive field, where the former has more parameters than the 

atter. 
4 
.1.3. The structure of LCU-Net 

There are multi-scale objects in EM images, as shown in Fig. 4 . 

onsidering that U-Net is difficult to adapt to this situation of 

ulti-scale objects in EM images as shown in Fig. 4 , we propose 

CU-Net to address this problem. As the U-Net structure shown 

n Fig. 2 , there is a sequence of two 3 × 3 convolution operations 

efore each pooling operation, each up-convolution operation, and 

he final convolution operation with Sigmoid, so the receptive field 

s limited. In contrast, in Inception series, convolution filters of 

ifferent sizes are used to obtain various receptive fields. Hence, 

e propose BLOCK-I as shown in Fig. 5 , which incorporates 1 × 1 , 

 × 3 , 5 × 5 , and 7 × 7 convolution filters in parallel [40] . 

Although BLOCK-I can improve the adaptability of the net- 

ork, it increases the memory cost. As mentioned in Section 3.1.2 , 

nception-V2 uses a sequence of two 3 × 3 convolution filters to re- 

lace a 5 × 5 convolution filter, and Inception-V3 uses a sequence 

f 1 × N and N × 1 convolution filters to replace a N × N convo- 

ution filter [7] . Considering these strategies in Inception-V2 and 

nception-V3, a sequence of three 3 × 3 convolution filters has the 

ame receptive field as a 7 × 7 convolution filter. Further, a se- 

uence of 1 × 3 and 3 × 1 convolution filters is used to replace a 

 × 3 convolution filter. Therefore, the 7 × 7 convolution filter of 
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Fig. 6. The examples of using multiple sequences of 1 × 3 and 3 × 1 convolution filters to replace convolution filters of different sizes. 

Fig. 7. The structure of BLOCK-II. 
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LOCK-I can be replaced by three sequences of 1 × 3 and 3 × 1 

onvolution filters. Similarly, the 5 × 5 convolution filter of BLOCK- 

 can be replaced by two sequences of 1 × 3 and 3 × 1 convolution 

lters. The examples are shown in Fig. 6 . 

In Fig. 6 , the 3 × 3 , 5 × 5 , and 7 × 7 convolution filters can be

eplaced by one, two, and three sequences of 1 × 3 and 3 × 1 con- 

olution filters, respectively. We find that the former layers of the 

hree sequences of 1 × 3 and 3 × 1 convolution filters, which are 

sed to replace the 7 × 7 convolution filter, can be used to ob- 

ain the same receptive fields as 3 × 3 and 5 × 5 convolution fil- 

ers by concatenate operations. By this idea, we propose BLOCK-II 

s shown in Fig. 7 . 

In Fig. 7 , there are three nodes annotated as (a), (b), and (c) 

n BLOCK-II, respectively. The concatenate operation is applied to 

odes (a), (b), and (c). It can obtain the same receptive fields as 

 × 3 , 5 × 5 , and 7 × 7 convolution filters, respectively. Simultane- 

usly, the above approach avoids the excessive use of the sequence 

f 1 × 3 and 3 × 1 convolution filters. Therefore, this approach can 

educe more memory cost. Because of the lower cost of memory 

ith BLOCK-II, we newly deploy BLOCK-II in LCU-Net. The struc- 

ure of the proposed LCU-Net is shown in Fig. 8 . 

Besides, we add a batch normalization layer after each convo- 

ution layer and convolution transpose layer to reduce the internal 

ovariate shift [41] in LCU-Net, and the padding in mode “same”

s applied to each convolution filter. The details of the LCU-Net 

re shown in Table 2 . To make a comparison with BLOCK-I, we 

lso provide the details of the network based on BLOCK-I, which 

s called U-Net-BI, in Table 2 . 

.2. Post-processing with dense CRF 

Although CNNs show good performance on the image segmen- 

ation task, there are still some shortages. It cannot take the de- 
5 
endency among local variables into consideration [42] . The CNN 

orks through the receptive field of the convolution filter. That is 

hy the size of the convolution filter is so important to the perfor- 

ance of CNN. In [9] , the fully connected CRF (Dense CRF) can es- 

ablish pairwise potentials on all pairs of pixels in an image. As the 

ense CRF workflow is shown in Fig. 9 , when we use this approach

s post-processing, it can effectively obtain the global information 

f the whole image to enhance the segmentation result. 

The Dense CRF model of [9] employs the energy function, which 

s the sum of unary potential and pairwise potential. The function 

s shown in Eq. (1) . 

 ( x ) = 

∑ 

i 

U ( x i ) + 

∑ 

i, j 

P 
(
x i , x j 

)
(1) 

In Eq. (1) , x is the label assignment of pixel. U ( x i ) represents 

he unary potential, which measures the inverse likelihood of the 

 -th pixel taking the label x i , and P 
(
x i , x j 

)
means the pairwise po- 

ential, which measures the cost of assigning labels x i , x j to i -th

ixel, j-th pixel simultaneously [43] . 

In our model, we use Eq. (2) as unary potential, where L ( x i ) is 

he label assignment probability at the i -th pixel as computed by 

ur neural networks [44] . 

 ( x i ) = − log L ( x i ) (2) 

The pairwise potential is defined as Eq. (3) , 

 

(
x i , x j 

)
= φ

(
x i , x j 

) M ∑ 

m =1 

ω 

( m ) k ( m ) 
(

f i , f j 
)

︸ ︷︷ ︸ 
k 
(

f i , f j 
)

(3) 

here φ
(
x i , x j 

)
is a penalty term on the labelling [42] . As ex- 

lained in [9] , φ
(
x i , x j 

)
is given by the Potts model. If the i -th pixel
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Fig. 8. The network structure of the LCU-Net. The details of Blocks (Block 1, Block 2,..., Block 9) are shown in Table 2 . 

Table 2 

A comparison of LCU-Net and U-Net-BI. Con2D is 2D convolution operation provided in Keras. 

Block 

Model 

Filter Number Block 

Model 

Filter Number 
U-Net-BI LCU-Net U-Net-BI LCU-Net 

Block 1 & Block 9 

Con2D(3,3) 
Con2D(3,1) 

16 Block 2 & Block 8 

Con2D(3,3) 
Con2D(3,1) 

32 

Con2D(1,3) Con2D(1,3) 

Con2D(5,5) 
Con2D(3,1) 

Con2D(5,5) 
Con2D(3,1) 

Con2D(1,3) Con2D(1,3) 

Con2D(7,7) 
Con2D(3,1) 

Con2D(7,7) 
Con2D(3,1) 

Con2D(1,3) Con2D(1,3) 

Con2D(1,1) Con2D(1,1) Con2D(1,1) Con2D(1,1) 

Block 3 & Block 7 

Con2D(3,3) 
Con2D(3,1) 

64 Block 4 & Block 6 

Con2D(3,3) 
Con2D(3,1) 

128 

Con2D(1,3) Con2D(1,3) 

Con2D(5,5) 
Con2D(3,1) 

Con2D(5,5) 
Con2D(3,1) 

Con2D(1,3) Con2D(1,3) 

Con2D(7,7) 
Con2D(3,1) 

Con2D(7,7) 
Con2D(3,1) 

Con2D(1,3) Con2D(1,3) 

Con2D(1,1) Con2D(1,1) Con2D(1,1) Con2D(1,1) 

Block 5 

Con2D(3,3) 
Con2D(3,1) 

256 

Con2D(1,3) 

Con2D(5,5) 
Con2D(3,1) 

Con2D(1,3) 

Con2D(7,7) 
Con2D(3,1) 

Con2D(1,3) 

Con2D(1,1) Con2D(1,1) 

Fig. 9. The workflow of Dense CRF for EM image segmentation post-processing. The network with Dense CRF as post-processing is abbreviated as Net + , such as LCU-Net 

with Dense CRF as post-processing is abbreviated as LCU-Net + . 
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Table 3 

The definitions of evaluation metrics. 

Metric Definition Metric Definition 

Dice Dice = 

2 ×| V Pred 

⋂ 
V GT | 

| V Pred | + | V GT | Jaccard Jaccard = 

| V Pred 

⋂ 
V GT | 

| V Pred 

⋃ 
V GT | 

Precision Precision = 

TP 
TP+FP 

Recall Recall = 

TP 
TP+FN 

Accuracy Accuracy = 

TP+TN 
TP+FN+FP+TN 

VOE VOE = 1 − | V Pred 

⋂ 
V GT | 

| V Pred 

⋃ 
V GT | 

4

w

t

c

t

c

L  

 

a

p

t
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J

j

l

t  
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fi
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s

s
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(

p

c
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p

p
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T

V

(

c

nd the j-th pixel have the same label, the penalty term is equal 

o zero; otherwise, it is equal to one. This function is shown as 

q. (4) . 

(
x i , x j 

)
= 

{
0 x i = x j 
1 x i � = x j 

(4) 

As Eq. (3) shows, each k ( m ) is the Gaussian kernel, which is de- 

ends on the feature vectors f i , f j of the i -th pixel and the j-

h pixel, and is weighted by ω 

( m ) . In [9] , k 
(

f i , f j 
)

uses contrast-

ensitive two-kernel potentials, defined in terms of the color vec- 

ors I i and I j and positions p i and p j . It is shown as Eq. (5) . 

 

(
f i , f j 

)
= ω 1 exp 

(
−‖ p i − p y ‖ 

2 

2 σ 2 
α

− ‖ I i − I j ‖ 

2 

2 σ 2 
β

)
︸ ︷︷ ︸ 

appearance kernel 

+ ω 2 exp 

(
−‖ p i − p j ‖ 

2 

2 σ 2 
γ

)
︸ ︷︷ ︸ 

smoothness kernel 

(5) 

The first appearance kernel depends on both pixel positions 

denoted as p) and pixel color intensities (denoted as I). The sec- 

nd smoothness kernel only depends on pixel positions. The pa- 

ameters σα, σβ and σω control the scale of Gaussian kernels. The 

rst kernel forces pixels with similar color and position to have 

imilar labels, while the second kernel only considers spatial prox- 

mity when enforcing smoothness [44] . 

. Experiments 

.1. Experimental settings 

.1.1. Image dataset 

In our work, we use Environmental Microorganism Dataset 5th 

ersion (EMDS-5), which is a newly released version of EMDS se- 

ies [45] , containing 21 classes of EMs. Each EM class contains 20 

riginal microscopic images and their corresponding ground truth 

GT) images. Since the microscopic images have multiple scales, 

e convert all the image sizes into 256 × 256 pixels uniformly, as 

hown in Fig. 10 . 

.1.2. Training, validation and test data setting 

We randomly divide each class of EMDS-5 into training, vali- 

ation, and test data sets in a ratio of 1:1:2. Thus, we have 105

riginal images and their corresponding GT images for training and 

alidation, respectively, and there are 210 original images for test- 

ng. 

Furthermore, in the training process, data augmentation can 

ffectively im prove the lack of training images. Considering the 

ethod proposed in [30] and our pre-tests, we augment the 105 

raining images with rotations of 0, 90, 180, and 270 degrees, 

hich result in 105 × 4 = 420 images. After that, these rotated im- 

ges are flipped over by the mirror, and 420 × 2 = 840 images are

btained. 

.1.3. Experimental environment 

The experiment is conducted by Python 3.6.8 in Windows 

0 operating system. The models we use in this paper are 

mplemented by Keras 2.24 [46] framework with Tensorflow 

.12.0 [47] as the backend. Our experiment uses a workstation 

ith Intel(R) Core(TM) i7-8700 CPU with 3.20GHz, 32GB RAM, and 

VIDIA GEFORCE RTX 2080 8GB. 
7 
.1.4. Hyper parameters 

The segmentation task is to predict the individual pixels 

hether they represent a point of interest (foreground EMs) or 

he background. Thus, the task can be seen as a pixel-level binary 

lassification. Hence, as the loss function of the network, we take 

he binary cross-entropy function and minimize it [48] . The binary 

ross-entropy loss for the image is defined as Eq. (6) . 

 1 (X, Y, ̂  Y ) = −
∑ 

i ∈ X 
(y i log ( ̂  y i ) + (1 − y i ) log (1 − ( ̂  y i )) (6)

In Eq. (6) , for the image X, Y is the corresponding GT image,

nd 

ˆ Y represents the predicted segmentation result. For the i -th 

ixel in image X, the network predicts ˆ y i , whereas the GT value in 

he model is y i [48] . 

For a batch with N images inside, the loss function J 1 is defined 

y Eq. (7) . 

 1 = 

1 

N 

N ∑ 

i =1 

L 1 (X i , Y i , ̂  Y i ) (7) 

Besides, we use Adam optimizer, which can dynamically ad- 

ust the learning rate in the training process [49] , with 1 . 5 × 10 −4 

earning rate and set the batch size to 2 in our training process. As 

he loss and accuracy curves of these models are shown in Fig. 11 ,

fter 40 iterations, the loss and accuracy curves level off. Therefore, 

onsidering the computational performance of the workstation, we 

nally set 50 epochs for training. 

.2. Evaluation metrics 

To compare the performance of various methods, different met- 

ics are used to evaluate the segmentation results. In our previous 

ork [2] , Recall and Accuracy are used to measure the segmenta- 

ion results. Besides that, we further employ Dice, Jaccard, Preci- 

ion, and VOE (volumetric overlap error) to evaluate the segmen- 

ation results. 

The Dice coefficient [50] is a widely used metric to evaluate 

egmentation performance. In addition to the comparison between 

redicted results and GT images, the Dice is usually used to mea- 

ure reproducibility, and it is mathematically equivalent to F1- 

core [51] . The Jaccard [52] , also named the IoU (intersection over 

nion), is defined as the intersection between two sets divided 

y their union [51] . Recall measures the portion of positive pixels 

foreground) in the ground truth images that are also identified as 

ositive pixels by the segmentation results [51] . Nevertheless, we 

annot judge the segmentation results only according to the value 

f Recall. The reason is well discussed in Section 4.3.2 . Precision re- 

ects the proportion of the real positive pixels among the positive 

ixels predicted by the model. Accuracy measures the sum of the 

ortions of positive pixels (foreground) and negative pixels (back- 

round) in the GT images that are also identified as positive and 

egative in the segmentation images. VOE (volume overlap error) 

s the complement of the Jaccard coefficient [53] . 

The definitions of these evaluation metrics are provided in 

able 3 . V Pred represents the foreground predicted by the model. 

 GT means the foreground in the GT image. TP (True Positive), FN 

False Negative), FP (False Positive), and TN (True Negative) are 

oncepts in the confusion matrix, and to facilitate understanding, 
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Fig. 10. Examples of the images in EMDS-5. (a) shows the original EM images and (b) provides the corresponding GT images. 

Fig. 11. The loss and accuracy curves of training process. 
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e provide a visual illustration in Fig. 12 . The red and green masks

epresent the foregrounds of the GT images and LCU-Net+ segmen- 

ation results, respectively, and the yellow masks are the overlap- 

ing parts of them. Meanwhile, the red, green, and yellow masks 

lso represent FN, FP, and TP in the confusion matrix, respectively, 

nd the regions without any mask in the image represent TN. 
8 
From the metrics shown in Table 3 , the higher the values of the 

rst four metrics (Dice, Jaccard, Precision, Recall, and Accuracy) are, 

he better the segmentation results are. On the contrary, the lower 

he value of the final metric (VOE) is, the better the segmentation 

esult is. 
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Fig. 12. The visual illustration on TP, FN, FP, and TN used in confusion matrix with examples of EM images. 

Table 4 

The memory and time costs of U-Net, U-Net-BI and LCU-Net. 

Model Memory Cost 

Time Cost 

Training Time Average Test Time 

U-Net 372,551,680 Byte (355 MB) 2145.38s (35.76min) 0.05s 

U-Net-BI 426,868,736 Byte (407 MB) 4694.09s (78.24min) 0.13s 

LCU-Net 108,560,384 Byte (103 MB) 2191.25s (36.52min) 0.15s 
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.3. Evaluation of segmentation methods 

To prove the effectiveness of the proposed LCU-Net method 

or EM image segmentation, we compare its segmentation results 

ith other classical and state-of-the-art methods mentioned in 

ection 2 . 

.3.1. Evaluation of different BLOCKs 

In this part, we make a comparison between BLOCK-I and 

LOCK-II. To this end, we carry out a series of experiments on U- 

et, U-Net-BI, and LCU-Net. 

Evaluation of Memory and Time Costs To compare the memory 

nd time costs among U-Net, U-Net-BI, and LCU-Net, we provide 

he details in Table 4 . 

From Table 4 , we can find that the memory cost of U-Net is

55 MB, the training time of U-Net is around 36 minutes for 840 

M images, and the average testing time is 0.05s for each test im- 

ge. In contrast, the memory cost of LCU-Net is significantly re- 

uced to 103 MB. From Table 4 , we can also find that U-Net and

CU-Net have closed training time around 36 minutes. Further- 

ore, the proposed LCU-Net has only 0.1s test time longer than 

hat of U-Net. Therefore, in contrast to U-Net, the LCU-Net saves 

0 . 99% memory cost and has very close training time. Although 

he average test time is 0.1s longer than U-Net, the difference is 

cceptable in the practical EM segmentation work. 

Evaluation of Segmentation Performance To compare the overall 

erformance of the segmentation methods, we provide the average 

valuation indices in Fig. 13 . 

From Fig. 13 , we can find that U-Net achieves good perfor- 

ance, but the results of U-Net-BI and LCU-Net are even better. Es- 

ecially, compared with U-Net, the average Dice value of LCU-Net 

s increased by around 1 . 5% ; the average Jaccard value of LCU-Net 

akes 1 . 79% improvement; the improvement of the average Recall 

alue made by LCU-Net is 5 . 14% ; for the average Accuracy, the im-

rovement of LCU-Net is 0 . 15% ; the average VOE of LCU-Net is re-

uced by 2 . 32% . Hence, from these evaluation indices by LCU-Net, 

he overall segmentation performance is effectively im proved. Al- 

hough U-Net-BI makes slightly better segmentation performance 

han LCU-Net, the memory cost of LCU-Net is only about a quar- 

er of that of U-Net-BI. Besides, the segmentation performance of 

CU-Net is also better than the original U-Net. 

To further improve the segmentation performance, we apply 

ense CRF as the post-processing after obtaining the segmenta- 
9 
ion results of our networks. Dense CRF effectively im proves the 

egmentation performance. We provide the average evaluation in- 

ices of U-Net+ (U-Net with Dense CRF as post-processing), U-Net- 

I+ (U-Net-BI with Dense CRF as post-processing), and LCU-Net+ 

LCU-Net with Dense CRF as post-processing) in Fig. 13 . We can 

nd that Dense CRF effectively assists these networks to further 

mprove the segmentation performance from Fig. 13 . Besides, U- 

et-BI+ and LCU-Net+ still perform better than U-Net+. 

After evaluating the overall performance of these methods, we 

lso provide the detailed indices and examples of the segmentation 

esults of each EM category under these methods in Table 5 and 

ig. 14 , respectively. 

From Table 5 and Fig. 14 , we can find that all the segmenta-

ion results of the improved methods can cover the main parts 

f the EMs. Besides, these improved methods have better EM de- 

ail acquisition capabilities than U-Net. The problems of under- 

egmentation and over-segmentation are much less in the seg- 

entation results by these improved methods. Thus, because of 

he minimum memory cost, low time cost, and good segmenta- 

ion performance with Dense CRF as the post-processing, we apply 

CU-Net+ in the EM image segmentation task. 

.3.2. Comparison with other methods 

In this part, we conduct some comparative experiments on 

he task of EM image segmentation. We mainly adopt some rep- 

esentative segmentation methods mentioned in Section 2.1 and 

ection 2.2 , including Otsu (threshold-based method), Canny 

edge-based method), Watershed (region-based method), Re- 

ion Growing (region-based method), MRF (unsupervised learn- 

ng method), k -means (unsupervised learning method), and Seg- 

et [54] (supervised learning method). Because the results are of- 

en insufficient, we need some post-processing for the results. For 

xample, when we use edge-based methods to perform the seg- 

entation task, it often needs post-processing, which includes di- 

ation, erosion, and so on, to assist it [55] . To show better segmen-

ation results of these methods, we uniformly used post-processing 

perations, which include dilation, erosion, flood-fill, and saving 

he largest region, to improve the segmentation results [55] . To 

valuate these methods’ overall performance, we provide the av- 

rage evaluation indices of these methods in Fig. 15 . 

From the average indices in Fig. 15 , we can find that the re- 

ults of our methods are better than that of other methods. How- 

ver, we can see that the Recall values in Fig. 15 (d) are higher than
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Table 5 

The average segmentation indices for each EM category. For short, Region Growing, Dice, Jaccard, Precision, Recall, Accuracy, and VOE are abbreviated to RG, D, J, P, R, A, and V, respectively. (In % ). 

EM Methods 

Evaluation Metrics 

EM Methods 

Evaluation Metrics 

EM Methods 

Evaluation Metrics 

D J P R A V D J P R A V D J P R A V 

(a) 

U-Net 71.80 57.47 95.19 59.13 97.53 42.53 

(b) 

U-Net 94.87 91.18 98.58 92.54 97.50 8.82 

(c) 

U-Net 94.06 88.86 96.24 92.19 99.70 11.14 

U-Net-BI 72.00 57.61 91.10 60.98 97.42 42.39 U-Net-BI 96.63 93.69 95.67 97.94 98.15 6.31 U-Net-BI 93.38 87.66 92.40 94.61 99.64 12.34 

LCU-Net 72.17 57.82 92.49 60.76 97.50 42.18 LCU-Net 97.31 94.98 96.15 98.78 98.49 5.02 LCU-Net 94.28 89.29 95.32 93.44 99.71 10.71 

U-Net + 71.83 57.46 95.30 59.27 97.52 42.54 U-Net + 95.19 91.73 98.87 92.77 97.66 8.27 U-Net + 93.97 88.74 94.88 93.41 99.69 11.26 

U-Net-BI + 71.30 56.76 93.78 59.19 97.41 43.24 U-Net-BI + 97.47 95.24 96.91 98.28 98.63 4.76 U-Net-BI + 93.02 87.09 93.41 93.11 99.62 12.91 

LCU-Net + 72.16 57.86 95.80 59.52 97.57 42.14 LCU-Net + 97.69 95.69 96.98 98.67 98.71 4.31 LCU-Net + 94.30 89.38 96.14 92.82 99.71 10.62 

Otsu 31.12 24.88 32.60 81.96 41.41 75.12 Otsu 73.32 63.24 64.26 98.64 71.46 36.76 Otsu 4.49 2.31 2.31 89.49 14.31 97.69 

Canny 27.42 19.37 19.54 99.16 36.52 80.63 Canny 76.29 66.33 66.88 99.13 77.18 33.67 Canny 13.90 10.14 10.15 99.96 25.33 89.86 

Watershed 32.05 26.13 32.14 83.53 44.12 73.87 Watershed 67.02 58.11 62.61 85.35 74.54 41.89 Watershed 12.22 9.87 10.58 69.11 44.02 90.13 

k -means 14.73 10.85 13.04 67.74 40.37 89.15 k -means 52.41 47.40 48.51 68.88 70.18 52.60 k-means 4.38 2.25 2.25 90.00 11.97 97.75 

MRF 30.79 24.17 26.05 95.69 33.50 75.83 MRF 65.40 57.31 57.37 89.97 63.60 42.69 MRF 4.37 2.24 2.24 90.00 12.80 97.76 

RG 32.92 22.67 42.43 78.93 43.08 77.33 RG 87.22 81.51 82.97 98.52 85.31 18.49 RG 11.58 7.84 11.96 95.67 12.16 92.16 

SegNet 71.80 57.21 90.94 61.09 97.42 42.79 SegNet 96.11 92.96 96.41 96.49 97.92 7.04 SegNet 92.91 86.84 93.46 92.63 99.64 13.16 

(d) 

U-Net 48.83 38.24 62.33 44.24 96.64 61.76 

(e) 

U-Net 87.46 78.83 85.99 91.19 97.25 21.17 

(f) 

U-Net 55.43 40.56 66.41 50.04 89.00 59.44 

U-Net-BI 58.27 44.86 65.14 56.97 97.17 55.14 U-Net-BI 84.30 74.51 79.46 94.14 97.62 25.49 U-Net-BI 68.38 52.90 69.14 70.82 90.67 47.10 

LCU-Net 58.18 45.13 64.40 61.85 96.83 54.87 LCU-Net 80.44 70.59 78.79 90.35 97.03 29.41 LCU-Net 63.30 48.02 62.56 71.42 87.94 51.98 

U-Net + 48.33 37.89 58.51 45.64 96.28 62.11 U-Net + 87.49 78.98 85.04 92.56 97.22 21.02 U-Net + 60.79 45.52 60.58 62.28 88.38 54.48 

U-Net-BI + 58.16 44.90 65.49 57.02 97.12 55.10 U-Net-BI + 86.38 77.74 81.42 95.20 98.09 22.26 U-Net-BI + 69.29 53.89 67.94 72.69 90.74 46.11 

LCU-Net + 59.20 46.29 64.21 60.44 96.68 53.71 LCU-Net + 82.28 72.93 79.88 91.74 97.22 27.07 LCU-Net + 64.01 48.94 58.86 76.74 87.11 51.06 

Otsu 4.49 2.32 2.32 90.00 11.32 97.68 Otsu 31.09 24.68 27.66 96.45 29.63 75.32 Otsu 24.72 14.75 14.77 90.01 22.98 85.25 

Canny 7.08 3.76 3.83 96.78 17.31 96.24 Canny 38.84 33.16 33.21 99.91 50.24 66.84 Canny 36.87 23.56 23.67 99.25 39.81 76.44 

Watershed 7.11 4.17 11.19 62.70 41.28 95.83 Watershed 35.94 28.92 33.82 82.44 58.59 71.08 Watershed 30.75 19.25 22.36 81.74 39.34 80.75 

k -means 4.49 2.32 2.32 90.00 11.33 97.68 k -means 14.17 10.11 12.98 61.92 41.06 89.89 k -means 24.72 14.75 14.77 90.01 22.99 85.25 

MRF 4.67 2.41 2.41 90.00 13.17 97.59 MRF 27.95 22.31 22.64 96.18 30.01 77.69 MRF 23.95 14.40 14.41 80.01 32.32 85.60 

RG 5.55 2.88 2.88 100.00 2.88 97.12 RG 19.71 14.97 15.08 99.88 15.20 85.03 RG 31.78 19.71 21.66 95.85 24.91 80.29 

SegNet 56.59 44.05 62.00 56.77 96.48 55.95 SegNet 90.57 83.42 86.77 95.19 98.52 16.58 SegNet 61.32 46.01 55.87 73.80 86.30 53.99 

(g) 

U-Net 90.11 82.93 86.89 93.82 98.41 17.07 

(h) 

U-Net 92.77 87.46 92.05 93.74 97.84 12.54 

(i) 

U-Net 86.57 80.98 97.01 83.51 97.55 19.02 

U-Net-BI 88.18 80.19 82.57 95.73 97.92 19.81 U-Net-BI 93.84 88.97 92.47 95.46 98.12 11.03 U-Net-BI 88.22 81.00 86.92 89.82 96.98 19.00 

LCU-Net 88.43 80.20 81.22 98.08 98.06 19.80 LCU-Net 94.26 89.38 91.73 97.33 98.11 10.62 LCU-Net 88.87 81.90 86.46 91.67 96.93 18.10 

U-Net + 89.87 82.56 85.07 95.79 98.28 17.44 U-Net + 92.99 87.83 91.77 94.41 97.88 12.17 U-Net + 90.37 84.30 97.29 86.66 97.96 15.70 

U-Net-BI + 88.53 80.59 82.10 97.21 97.99 19.41 U-Net-BI + 94.05 89.39 93.38 94.90 98.19 10.61 U-Net-BI + 88.99 82.23 89.57 88.72 97.11 17.77 

LCU-Net + 88.96 81.04 82.03 98.21 98.16 18.96 LCU-Net + 94.59 90.00 92.73 96.97 98.23 10.00 LCU-Net + 89.38 82.49 88.47 90.88 97.01 17.51 

Otsu 47.39 41.79 43.36 86.30 66.37 58.21 Otsu 48.37 38.58 39.34 98.88 45.03 61.42 Otsu 70.77 62.37 68.10 91.17 82.17 37.63 

Canny 50.29 40.19 40.28 99.49 64.59 59.81 Canny 56.84 45.71 46.31 99.04 59.01 54.29 Canny 59.88 53.94 54.63 68.78 89.70 46.06 

Watershed 63.96 55.62 69.74 79.39 79.31 44.38 Watershed 64.85 55.60 69.83 85.37 71.92 44.40 Watershed 69.53 57.41 76.13 73.35 91.25 42.59 

k -means 5.90 3.46 4.22 26.19 73.90 96.54 k -means 14.27 8.53 8.53 50.00 50.66 91.47 k -means 70.40 63.18 71.23 79.46 88.32 36.82 

MRF 34.49 26.47 26.74 86.95 50.06 73.53 MRF 49.80 40.69 40.90 90.44 48.86 59.31 MRF 62.29 54.19 56.04 96.48 72.24 45.81 

RG 15.39 8.55 10.73 92.94 15.52 91.45 RG 40.59 29.67 31.55 97.73 33.01 70.33 RG 61.43 50.09 66.63 83.11 66.07 49.91 

SegNet 89.44 81.90 84.05 96.32 98.11 18.10 SegNet 92.58 86.66 91.45 94.02 97.60 13.34 SegNet 86.48 79.34 87.13 87.92 97.06 20.66 

(j) 

U-Net 91.36 84.30 88.07 95.13 98.97 15.70 

(k) 

U-Net 88.48 82.47 98.09 83.70 92.27 17.53 

(l) 

U-Net 83.32 73.21 92.84 76.63 96.91 26.79 

U-Net-BI 90.49 82.89 85.56 96.26 98.56 17.11 U-Net-BI 94.96 90.66 97.07 93.27 96.08 9.34 U-Net-BI 81.56 72.48 87.23 80.01 96.73 27.52 

LCU-Net 92.39 85.96 89.11 96.10 99.04 14.04 LCU-Net 90.90 84.57 98.02 86.44 93.20 15.43 LCU-Net 85.45 76.71 93.99 81.18 97.56 23.29 

U-Net + 94.87 90.30 93.41 96.41 99.34 9.70 U-Net + 89.39 83.64 98.09 84.92 92.91 16.36 U-Net + 83.62 74.03 90.34 79.37 96.84 25.97 

U-Net-BI + 93.97 88.79 92.71 95.52 99.02 11.21 U-Net-BI + 96.51 93.41 98.05 95.31 97.19 6.59 U-Net-BI + 81.60 72.11 89.23 79.57 96.65 27.89 

LCU-Net + 94.71 90.01 93.98 95.52 99.34 9.99 LCU-Net + 92.08 86.35 98.78 87.49 93.95 13.65 LCU-Net + 86.78 77.63 96.70 80.49 97.53 22.37 

Otsu 40.02 30.44 35.81 92.00 49.12 69.56 Otsu 62.33 47.70 48.42 98.31 53.08 52.30 Otsu 71.38 59.30 77.37 78.35 87.15 40.70 

Canny 39.67 29.82 29.89 99.78 51.99 70.18 Canny 96.33 93.08 94.33 98.69 97.26 6.92 Canny 81.01 70.90 74.55 94.04 95.34 29.10 

Watershed 52.79 46.33 53.16 81.29 69.19 53.67 Watershed 81.31 70.81 93.14 76.38 88.34 29.19 Watershed 58.03 44.56 81.04 49.56 92.10 55.44 

k -means 26.83 21.05 29.99 60.11 58.32 78.95 k -means 37.23 26.15 27.25 64.81 46.37 73.85 k -means 49.35 42.78 54.31 46.28 92.75 57.22 

MRF 39.99 30.49 30.55 99.77 49.66 69.51 MRF 75.89 65.49 68.13 91.39 74.99 34.51 MRF 71.41 62.50 66.58 95.17 77.90 37.50 

RG 17.96 12.91 13.49 99.26 14.38 87.09 RG 86.09 79.67 81.82 93.89 86.27 20.33 RG 48.54 37.82 55.08 82.21 53.31 62.18 

SegNet 88.80 80.08 82.95 95.92 98.62 19.92 SegNet 85.97 79.80 98.06 81.63 91.58 20.20 SegNet 81.47 71.89 79.96 89.03 96.06 28.11 

( continued on next page ) 
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Table 5 ( continued ) 

EM Methods Evaluation Metrics EM Methods Evaluation Metrics EM Methods Evaluation Metrics 

D J P R A V D J P R A V D J P R A V 

(m) 

U-Net 88.76 80.63 95.40 84.50 97.25 19.37 

(n) 

U-Net 84.62 74.52 88.08 83.31 97.76 25.48 

(o) 

U-Net 93.06 87.23 95.23 91.36 97.38 12.77 

U-Net-BI 91.02 83.78 91.55 91.03 97.67 16.22 U-Net-BI 81.60 72.46 82.87 80.83 97.44 27.54 U-Net-BI 93.07 87.34 92.84 93.66 97.46 12.66 

LCU-Net 89.14 81.95 87.43 92.19 96.39 18.05 LCU-Net 84.86 75.70 88.70 83.73 97.96 24.30 LCU-Net 92.67 86.50 93.37 92.63 97.32 13.50 

U-Net + 91.46 84.65 95.51 88.38 97.86 15.35 U-Net + 86.63 77.51 87.12 87.77 97.98 22.49 U-Net + 93.43 87.89 95.18 92.02 97.59 12.11 

U-Net-BI + 92.23 85.80 93.23 91.60 98.02 14.20 U-Net-BI + 83.60 74.85 83.06 84.45 97.60 25.15 U-Net-BI + 92.96 87.26 93.96 92.26 97.46 12.74 

LCU-Net + 89.87 83.24 88.76 92.61 96.44 16.76 LCU-Net + 85.68 76.69 89.49 84.58 98.06 23.31 LCU-Net + 93.12 87.25 95.14 91.62 97.49 12.75 

Otsu 51.66 41.92 45.70 93.14 60.62 58.08 Otsu 50.54 40.88 41.58 96.80 66.80 59.12 Otsu 81.89 72.00 78.66 91.81 86.40 28.00 

Canny 72.96 59.94 60.50 98.60 89.60 40.06 Canny 58.66 48.92 49.54 78.62 91.03 51.08 Canny 82.68 84.44 84.44 96.10 96.33 15.56 

Watershed 58.66 45.73 62.14 66.26 86.71 54.27 Watershed 50.63 41.24 53.39 62.44 87.21 58.76 Watershed 86.87 77.41 88.06 87.17 95.14 22.59 

k -means 32.19 24.88 26.46 66.89 63.76 75.12 k -means 43.26 35.96 37.04 67.48 81.26 64.04 k -means 53.16 45.87 53.93 61.56 77.84 54.13 

MRF 46.34 37.67 45.09 63.34 70.34 62.33 MRF 37.39 28.75 29.57 93.29 48.98 71.25 MRF 78.00 68.09 68.89 97.83 83.00 31.91 

RG 51.27 39.86 45.21 92.88 54.15 60.14 RG 64.98 57.03 69.86 86.28 71.19 42.97 RG 58.39 46.76 56.30 90.00 56.66 53.24 

SegNet 88.40 80.01 86.04 91.83 96.89 19.99 SegNet 79.92 71.45 76.32 85.24 96.59 28.55 SegNet 92.68 86.44 91.69 94.15 97.14 13.56 

(p) 

U-Net 89.80 82.23 97.22 84.41 97.59 17.77 

(q) 

U-Net 89.28 83.16 87.97 94.22 97.95 16.84 

(r) 

U-Net 93.08 87.27 98.93 88.16 95.07 12.73 

U-Net-BI 92.89 87.08 97.77 88.93 98.27 12.92 U-Net-BI 87.21 80.41 82.19 97.77 97.95 19.59 U-Net-BI 95.23 90.96 97.91 92.84 96.47 9.04 

LCU-Net 92.98 87.18 97.57 89.15 98.33 12.82 LCU-Net 86.19 80.22 83.02 96.35 97.34 19.78 LCU-Net 94.18 89.07 97.92 90.85 95.81 10.93 

U-Net + 90.04 82.64 97.17 84.85 97.64 17.36 U-Net + 88.65 82.43 87.38 94.21 97.69 17.57 U-Net + 93.71 88.31 99.13 89.06 95.58 11.69 

U-Net-BI + 91.90 85.43 97.76 87.18 98.06 14.57 U-Net-BI + 86.76 79.87 83.43 95.46 97.84 20.13 U-Net-BI + 94.89 90.35 98.51 91.69 96.48 9.65 

LCU-Net + 92.40 86.18 97.74 87.93 98.22 13.82 LCU-Net + 84.94 78.99 82.92 95.22 96.79 21.01 LCU-Net + 94.12 88.99 98.57 90.18 95.82 11.01 

Otsu 58.89 48.05 57.65 77.64 75.02 51.95 Otsu 30.04 23.52 26.21 97.30 29.84 76.48 Otsu 73.25 63.89 70.33 93.31 68.78 36.11 

Canny 65.46 54.89 56.50 97.17 77.66 45.11 Canny 68.81 60.51 61.93 88.19 87.95 39.49 Canny 93.34 87.71 95.55 91.57 95.46 12.29 

Watershed 83.95 76.86 86.78 89.09 88.97 23.14 Watershed 75.71 70.45 75.08 84.80 91.40 29.55 Watershed 90.56 83.16 91.75 90.27 93.60 16.84 

k -means 35.76 29.06 36.01 52.81 73.97 70.94 k -means 22.88 16.54 17.31 89.23 26.35 83.46 k -means 44.09 35.65 41.06 64.40 57.64 64.35 

MRF 72.88 62.65 74.85 86.65 82.23 37.35 MRF 71.57 62.06 67.63 93.71 80.57 37.94 MRF 71.04 59.07 83.40 74.37 77.65 40.93 

RG 66.66 54.98 70.07 83.61 73.16 45.02 RG 37.21 29.03 36.23 92.70 35.78 70.97 RG 62.75 48.82 60.65 87.78 56.71 51.18 

SegNet 92.31 86.21 95.29 90.45 98.11 13.79 SegNet 83.97 77.62 80.59 96.35 96.64 22.38 SegNet 93.57 88.03 97.22 90.54 95.43 11.97 

(s) 

U-Net 91.56 85.20 99.72 85.43 98.37 14.80 

(t) 

U-Net 80.01 68.72 97.60 70.06 93.57 31.28 

(u) 

U-Net 94.86 90.32 99.80 90.49 97.52 9.68 

U-Net-BI 95.03 90.82 98.50 92.17 98.94 9.18 U-Net-BI 89.79 82.25 97.45 84.23 96.16 17.75 U-Net-BI 95.76 91.95 98.51 93.21 97.85 8.05 

LCU-Net 92.20 86.37 98.76 87.50 98.20 13.63 LCU-Net 87.07 78.74 96.75 81.18 95.18 21.26 LCU-Net 96.44 93.18 98.44 94.59 98.19 6.82 

U-Net + 91.61 85.18 99.71 85.40 98.35 14.82 U-Net + 81.43 70.60 97.82 71.89 93.90 29.40 U-Net + 94.64 89.93 99.81 90.09 97.46 10.07 

U-Net-BI + 93.63 88.37 99.64 88.66 98.72 11.63 U-Net-BI + 89.79 82.30 98.73 83.22 96.17 17.70 U-Net-BI + 94.71 90.08 98.99 90.93 97.43 9.92 

LCU-Net + 90.97 84.36 99.15 85.12 97.99 15.64 LCU-Net + 87.32 79.11 97.64 80.82 95.27 20.89 LCU-Net + 95.24 91.01 98.99 91.91 97.73 8.99 

Otsu 40.28 33.47 40.85 81.99 48.48 66.53 Otsu 45.84 37.62 50.22 66.33 65.49 62.38 Otsu 83.78 75.20 84.21 89.96 86.09 24.80 

Canny 57.15 50.79 53.33 97.16 61.44 49.21 Canny 65.65 55.66 59.43 95.10 74.53 44.34 Canny 94.61 89.95 92.67 96.90 97.29 10.05 

Watershed 63.62 56.80 71.38 75.32 81.57 43.20 Watershed 53.94 41.84 75.68 64.57 73.45 58.16 Watershed 74.09 69.24 77.64 71.37 90.15 30.76 

k -means 40.64 33.98 43.14 80.83 49.76 66.02 k -means 21.65 16.86 22.86 43.63 62.27 83.14 k -means 58.84 52.88 61.99 59.87 84.82 47.12 

MRF 53.15 48.06 52.74 95.29 52.46 51.94 MRF 63.25 54.90 68.43 75.36 72.29 45.10 MRF 75.49 67.62 68.60 98.93 71.03 32.38 

RG 70.00 59.52 76.51 82.98 74.94 40.48 RG 69.03 58.15 77.54 79.05 76.89 41.85 RG 58.44 46.41 49.23 97.17 48.64 53.59 

SegNet 91.79 85.61 97.23 87.92 98.32 14.39 SegNet 86.82 78.32 97.58 79.91 95.13 21.68 SegNet 96.31 92.92 98.17 94.59 98.13 7.08 
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Fig. 13. The evaluation indices of U-Net, U-Net+, U-Net-BI, U-Net-BI+, LCU-Net and LCU-Net+. The blue columns show the evaluation of segmentation results generated 

by the networks. The red columns show the evaluation of segmentation results generated by the networks with Dense CRF as post-processing. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he Recall values generated by U-Net, U-Net-BI, LCU-Net, and LCU- 

et+. This is because some of the segmentation results by other 

ethods have many background parts partitioned into the fore- 

round [2] . What is more serious is that the whole picture is par-

itioned into the foreground. We can easily find this situation from 

ig. 14 . From the definition of Recall shown in Table 3 , we can

ealize that as long as the foreground in the segmentation result 

ontains the entire real foreground in GT, the value of Recall is 

 regardless of whether the over-segmentation problem is exist- 

ng or not. Therefore, when we evaluate the segmentation results, 

e should not judge them by the value of Recall alone. From the 

bove, we should consider multiple indices when we evaluate the 

egmentation results. 

To observe the performance of these methods better, we pro- 

ide not only the overall average indices in Fig. 15 but also the de-

ailed indices of the segmentation results of each category of EMs 

nder these methods in Table 5 . Besides, we also provide examples 

f the segmentation results under these methods in Fig. 14 . 

.3.3. Comparison with local-Global CRF segmentation 

In our previous work of Local-Global CRF [2] , we use the EMDS- 

 data set with 20 categories of EMs. In contrast to EMDS-4, we 

ave one more EM category ( Gymnodinium ) in EMDS-5 in this pa- 

er. Therefore, we evaluate the segmentation results obtained by 

CU-Net+ without Gymnodinium here. Furthermore, there are six 
12 
odels for segmentation in [2] to compare: Per-pixel RF (noEdges), 

RF with Potts pairwise potentials (Potts), CRF with contrast- 

ensitive Potts model (PottsCS), fully connected CRF with Gaussian 

airwise potentials (denseCRF), fully connected CRF on segmenta- 

ion results by the original DeepLab method [44] (denseCRForg), 

ully convolutional network (FCN). Considering the evaluation met- 

ics used in our previous work, we use Average Recall and Overall 

ccuracy to evaluate the performance of the segmentation results 

n [2] . The Average Recall and Overall Accuracy values of LCU-Net+ 

nd our previous models are shown in Fig. 16 . 

From Fig. 16 , we can find that compared with our previous 

odels, the Average Recall is improved by more than 7% , and the 

verall Accuracy increases by at least 1% . From this, we can realize 

hat the proposed LCU-Net+ in this paper performs better than the 

odels in our previous work [2] . 

.3.4. Repeatability tests 

In the repeatability tests, we add four more repeatability LCU- 

et+ experiments based on the original experiment. The overall 

valuation indices of these segmentation results are provided in 

able 6 . From Table 6 , we find that all five LCU-Net+ experiments

erform better than the original U-Net and the evaluation indices 

f the five experiments are approximate. Therefore, it is proved 

hat LCU-Net+ has good stability and performance on the EM im- 

ge segmentation task. 
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Fig. 14. An example of GT and segmentation results for each EM category by U-Net, U-Net-BI, LCU-Net, U-Net+, U-Net-BI+, LCU-Net+, Otsu, Canny, Watershed, k -means, MRF, 

RegionGrowing and SegNet (from the left to the right). The red regions are GT and the segmentation results by different methods. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

13 



J. Zhang, C. Li, S. Kosov et al. Pattern Recognition 115 (2021) 107885 

Fig. 15. The average evaluation indices of Otsu, Canny, Watershed, k -means, MRF, RegionGrowing (RG), SegNet and LCU-Net+ based EM image segmentation. 

Fig. 16. The Average Recall and Overall Accuracy of LCU-Net+ and Local-Global CRF in [2] . 

Table 6 

The evaluation indices of Repeatability Tests. For short, Repetition is abbreviated to Re. (In %). 

Model Dice Jaccard Precision Recall Accuracy VOE 

LCU-Net + 87.13 79.74 90.14 87.12 96.91 20.26 

LCU-Net + (Re 1) 87.12 79.60 91.78 84.83 97.05 20.40 

LCU-Net + (Re 2) 87.15 79.94 88.97 87.96 97.00 20.06 

LCU-Net + (Re 3) 87.12 79.69 89.46 88.03 97.00 20.31 

LCU-Net + (Re 4) 87.27 79.95 88.90 88.51 96.94 20.05 

U-Net 85.24 77.42 91.41 82.27 96.76 22.58 

14 
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. Conclusion and future work 

In this paper, we propose LCU-Net for the EM image segmen- 

ation task. LCU-Net is a CNN based on U-Net, Inception, and 

oncatenate operations. Furthermore, the Dense CRF is applied as 

ost-processing to obtain global information to enhance the seg- 

entation results (LCU-Net with Dense CRF as post-processing is 

bbreviated to LCU-Net+). The proposed method not only performs 

etter than the original U-Net but also reduces the memory cost 

rom 355 MB to 103 MB. In the evaluation of segmentation re- 

ults by LCU-Net+, the values of evaluation indices Dice, Jaccard, 

recision, Recall, Accuracy, and VOE (volume overlap error) are 

7 . 13% , 79 . 74% , 90.14%, 87 . 12% , 96 . 91% , and 20 . 26% , respectively.

ompared with U-Net, the these indices are improved by 1 . 89% , 

 . 32% , 4 . 84% , and 0 . 14% , respectively, and Precision and VOE is de-

reased by 1 . 27% and 2 . 32% . Besides, compared with our previous

ocal-Global CRF model in [2] , the performance of segmentation 

esults is significantly improved. 

In the future, we plan to increase the number of images in our 

ata set and optimize the time cost of LCU-Net to improve seg- 

entation performance. Meanwhile, we will also consider more 

ew methods in our future work. For example, the strategy used 

n AdderNet [56] is considered to optimize our network, where in- 

tead of multiplication operation, addition operation is applied to 

educe the computational complexity of CNNs. We also consider 

sing the fuzzy binarization proposed in [57] to produce multiple 

mage layers and use them to train separate deep learning models 

o improve segmentation performance. Besides, we can apply GAN 

o perform the data augmentation task [58] . 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

cknowledgements 

We thank Prof. Beihai Zhou, Dr. Fangshu Ma from the University 

f Science and Technology Beijing, PR China, and Prof. Yanling Zou 

rom Freiburg University, Germany, for their previous cooperation 

n this work. We thank Miss Zixian Li and Mr. Guoxian Li for their 

mportant discussion. We also thank B.E. Xuemin Zhu from Johns 

opkins University, US and B.E. Bolin Lu from Huazhong Univer- 

ity of Science and Technology, PR China, for their careful work in 

he EMDS-5 image data preparation. Especially, Prof. Dr.-Ing. Chen 

i works as the co-first author and corresponding author in this 

aper. 

eferences 

[1] R. Maier , I. Pepper , C. Gerba , Environmental microbiology, Academic Press, 

2015 . 
[2] S. Kosov , K. Shirahama , C. Li , et al. , Environmental microorganism classifica-

tion using conditional random fields and deep convolutional neural networks, 

Pattern Recognit 77 (2018) 248–261 . 
[3] C. Li , K. Wang , N. Xu , A survey for the applications of content-based micro-

scopic image analysis in microorganism classification domains, Artif Intell Rev 
51 (4) (2019) 577–646 . 

[4] T. Yamaguchi , S. Kawakami , M. Hatamoto , et al. , In situ DNA-hybridization
chain reaction (HCR): afacilitated in situ HCR system for the detection of envi- 

ronmental microorganisms, Environ. Microbiol. 17 (2015) 2532–2541 . 
[5] O. Ronneberger , P. Fischer , T. Brox , U-Net: convolutional networks for biomed-

ical image segmentation, Proc. of International Conference on Medical Image 

Computing and Computer-Assisted Intervention, MICCAI 2015, Springer, 2015, 
pp. 234–241 . 

[6] S. Ghosh , A. Pal , S. Jaiswal , et al. , Segfast-v2: semantic image segmentation
with less parameters in deep learning for autonomous driving, Int. J. Mach. 

Learn. Cybern. 10 (11) (2019) 3145–3154 . 
15 
[7] C. Szegedy , V. Vanhoucke , S. Ioffe , et al. , Rethinking the inception architecture
for computer vision, Proc. of the IEEE Conference on Computer Vision and Pat- 

tern Recognition, CVPR 2016, IEEE, 2016, pp. 2818–2826 . 
[8] B. Zhang , S. Qi , P. Monkam , et al. , Ensemble learners of multiple deep CNNs

for pulmonary nodules classification using CT images, IEEE Access 7 (2019) 
110358–110371 . 

[9] P. Krähenbühl , V. Koltun , Efficient inference in fully connected Crfs with Gaus- 
sian edge potentials, Proc. of 25th Annual Conference on Neural Information 

Processing Systems 2011, NIPS 2011, Curran Associates Inc., 2011, pp. 109–117 . 

[10] F. Kulwa , C. Li , X. Zhao , et al. , A state-of-the-art survey for microorgan-
ism image segmentation methods and future potential, IEEE Access 7 (2019) 

100243–100269 . 
[11] X. Yang , H. Beyenal , G. Harkin , et al. , Evaluation of biofilm image thresholding

methods, Water Res. 35 (5) (2001) 1149–1158 . 
[12] J. Yerly , Y. Hu , S. Jones , et al. , A two-step procedure for automatic and accurate

segmentation of volumetric CLSM biofilm images, J. Microbiol. Methods 70 (3) 

(2007) 424–433 . 
[13] D. Rojas , L. Rueda , A. Ngom , et al. , Image segmentation of biofilm structures

using optimal multi-level thresholding, Int J Data Min Bioinform 5 (3) (2011) 
266–286 . 

[14] M. Khan , H. Nisar , C. Ng , et al. , Local adaptive approach toward segmenta-
tion of microscopic images of activated sludge flocs, J Electron Imaging 24 (6) 

(2015) 061102 . 

[15] M. Khan , H. Nisar , N. Aun , et al. , Iterative region based Otsu thresholding of
bright-field microscopic images of activated sludge, Proc. of 2016 IEEE-EMBS 

Conference on Biomedical Engineering and Sciences, IECBES 2016, IEEE, 2016, 
pp. 533–538 . 

[16] M. Dubuisson , A. Jain , M. Jain , Segmentation and classification of bacterial cul-
ture images, J. Microbiol. Methods 19 (4) (1994) 279–295 . 

[17] M. Forero , G. Cristobal , J. Alvarez-Borrego , Automatic identification techniques 

of tuberculosis bacteria, Proc. of Applications of Digital Image Processing XXVI, 
SPIE 2003, SPIE, 2003, pp. 71–81 . 

[18] M. DaneshPanah , B. Javidi , Segmentation of 3D holographic images using bi- 
variate jointly distributed region snake, Opt Express 14 (12) (2006) 5143–5153 . 

[19] E. Gutzeit , C. Scheel , T. Dolereit , et al. , Contour based split and merge segmen-
tation and pre-classification of zooplankton in very large images, Proc. of 9th 

International Conference on Computer Vision Theory and Applications, VISAPP 

2014, SciTePress, 2014, pp. 417–424 . 
20] P. Hiremath , P. Bannigidad , M. Hiremath , Automated identification and clas- 

sification of Rotavirus-A particles in digital microscopic images, Proc. of Nat. 
Conf. on Recent Trends in Image Processing and Pattern Recognition, RTIPPR 

2010, IJCA, 2010, pp. 69–73 . 
[21] F. Long , J. Zhou , H. Peng , Visualization and analysis of 3D microscopic images,

PLoS Comput. Biol. 8 (6) (2012) e1002519 . 

22] M. Chayadevi , G. Raju , Automated colour segmentation of tuberculosis bacteria 
thru region growing: a novel approach, Proc. of 5th International Conference 

on the Applications of Digital Information and Web Technologies, ICADIWT 
2014, IEEE, 2014, pp. 154–159 . 

23] C. Xu , D. Zhou , T. Guan , et al. , A segmentation algorithm for mycobacterium
tuberculosis images based on automatic-marker watershed transform, Proc. of 

2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 
2014, IEEE, 2014, pp. 94–98 . 

24] M. Osman , M. Mashor , H. Jaafar , Performance comparison of clustering and 

thresholding algorithms for tuberculosis bacilli segmentation, Proc. of 2012 In- 
ternational Conference on Computer, Information and Telecommunication Sys- 

tems, CITS 2012, IEEE, 2012, pp. 1–5 . 
25] M. Kemmler , B. Fröhlich , E. Rodner , et al. , Segmentation of microorganism in

complex environments, Pattern Recognit Image Anal. 23 (4) (2013) 512–517 . 
26] R. Rulaningtyas , A. Suksmono , T. Mengko , et al. , Multi patch approach in

k -means clustering method for color image segmentation in pulmonary tu- 

berculosis identification, Proc. of 4th International Conference on Instrumen- 
tation, Communications, Information Technology and Biomedical Engineering, 

ICICI-BME 2015, IEEE, 2015, pp. 75–78 . 
27] C. Suzuki , J. Gomes , A. Falcao , et al. , Automatic segmentation and classification

of human intestinal parasites from microscopy images, IEEE Trans. Biomed. 
Eng. 60 (3) (2012) 803–812 . 

28] D. Nie , E. Shank , V. Jojic , A deep framework for bacterial image segmentation

and classification, Proc. of 6th ACM Conference on Bioinformatics, Computa- 
tional Biology, and Health Informatics, BCB 2015, ACM, 2015, pp. 306–314 . 

29] K. Dannemiller , K. Ahmadi , E. Salari , A new method for the segmentation of
algae images using retinex and support vector machine, Proc. of IEEE Inter- 

national Conference on Electro/Information Technology, EIT 2015, IEEE, 2015, 
pp. 361–364 . 

30] D. Matuszewski , I. Sintorn , Minimal annotation training for segmentation of 

microscopy images, Proc. of 15th IEEE International Symposium on Biomedical 
Imaging, ISBI 2018, IEEE, 2018, pp. 387–390 . 

[31] K. Bhargavi , S. Jyothi , A survey on threshold based segmentation technique in 
image processing, International Journal of Innovative Research and Develop- 

ment 3 (12) (2014) 234–239 . 
32] N. Otsu , A threshold selection method from gray-level histograms, IEEE Trans 

Syst Man Cybern 9 (1) (1979) 62–66 . 

33] N. Senthilkumaran , R. Rajesh , Edge detection techniques for image segmenta- 
tion-A survey of soft computing approaches, International Journal of Recent 

Trends in Engineering 1 (2) (2009) 250–254 . 
34] J. Canny , A computational approach to edge detection, IEEE Trans Pattern Anal 

Mach Intell 8 (6) (1986) 679–698 . 

http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0034


J. Zhang, C. Li, S. Kosov et al. Pattern Recognition 115 (2021) 107885 

[  

[

[

[  

[  

[  

[  

[  

[  

[  

[
 

[

[  

[

 

[  

[

[

[

[  

[  

[  

b

e
f

t

(

35] L. Vincent , P. Soille , Watersheds in digital spaces: an efficient algorithm based
on immersion simulations, IEEE Trans Pattern Anal Mach Intell 13 (6) (1991) 

583–598 . 
36] J. Hartigan , M. Wong , Algorithm AS 136: A K-means clustering algorithm, Jour- 

nal of the Royal Statistical Society. Series C (Applied Statistics) 28 (1) (1979) 
100–108 . 

37] S. Li , Markov random field models in computer vision, Proc. of European con- 
ference on computer vision, ECCV 1994, Springer, 1994, pp. 109–117 . 

38] M. Drozdzal , E. Vorontsov , G. Chartrand , et al. , The importance of skip connec-

tions in biomedical image segmentation, Deep Learning and Data Labeling for 
Medical Applications (2016) 179–187 . 

39] C. Szegedy , W. Liu , Y. Jia , et al. , Going deeper with convolutions, Proc. of IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015, IEEE, 

2015, pp. 1–9 . 
40] C. Li , J. Zhang , X. Zhao , et al. , MRFU-Net: a multiple receptive field U-Net for

environmental microorganism image segmentation, Proc. of 8th International 

Conference on Information Technologies in Biomedicine, ITIB 2020, Springer, 
2020, pp. 27–40 . 

[41] S. Ioffe , C. Szegedy , Batch normalization: accelerating deep network training 
by reducing internal covariate shift, Proc. of 32nd International Conference on 

Machine Learning, ICML 2015, IMLS, 2015, pp. 448–456 . 
42] Y. Cao , Z. Wu , C. Shen , Estimating depth from monocular images as classifica-

tion using deep fully convolutional residual networks, IEEE Trans. Circuits Syst. 

Video Technol. 28 (11) (2017) 3174–3182 . 
43] S. Zheng , S. Jayasumana , B. Romera-Paredes , et al. , Conditional random fields

as recurrent neural networks, Proc. of 15th IEEE International Conference on 
Computer Vision, ICCV 2015, IEEE, 2015, pp. 1529–1537 . 

44] L. Chen , G. Papandreou , I. Kokkinos , et al. , Deeplab: semantic image segmen-
tation with deep convolutional nets, atrous convolution, and fully connected 

crfs, IEEE Trans Pattern Anal Mach Intell 40 (4) (2017) 834–848 . 

45] Y. Zou , C. Li , K. Shirahama , et al. , Environmental microorganism image retrieval
using multiple colour channels fusion and particle swarm optimisation, Proc. 

of 23rd IEEE International Conference on Image Processing, ICIP 2016, IEEE, 
2016, pp. 2475–2479 . 

46] A. Gulli , S. Pal , Deep learning with keras, Packt Publishing Ltd, 2017 . 
[47] M. Abadi , P. Barham , J. Chen , et al. , Tensorflow: a system for large-scale ma-

chine learning, Proc. of 12th USENIX Symposium on Operating Systems Design 

and Implementation, OSDI 2016, USENIX Association, 2016, pp. 265–283 . 
48] N. Ibtehaz , M. Rahman , Multiresunet: rethinking the U-Net architecture for 

multimodal biomedical image segmentation, Neural Networks 121 (2020) 
74–87 . 

49] D. Kingma , J. Ba , Adam: a method for stochastic optimization, Proc. of 3rd
International Conference on Learning Representations, ICLR 2015, ICLR, 2015, 

pp. 1–8 . 

50] L. Dice , Measures of the amount of ecologic association between species, Ecol- 
ogy 26 (3) (1945) 297–302 . 

[51] A . Taha , A . Hanbury , Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool, BMC Med Imaging 15 (1) (2015) 29 . 

52] P. Jaccard , The distribution of the flora in the alpine zone. 1, New Phytol. 11
(2) (1912) 37–50 . 

53] P. Christ, F. Ettlinger, F. Grün, et al., Automatic liver and tumor segmentation of 
CT and MRI volumes using cascaded fully convolutional neural networks arXiv: 

1702.05970 , 2017 . 

54] V. Badrinarayanan , A. Kendall , R. Cipolla , Segnet: a deep convolutional en- 
coder-decoder architecture for image segmentation, IEEE Trans Pattern Anal 

Mach Intell 39 (12) (2017) 24 81–24 95 . 
55] R. Gonzalez , R. Woods , Digital Image Processing, Pearson Education, 2011 . 

56] H. Chen , Y. Wang , C. Xu , et al. , AdderNet: do we really need multiplications
in deep learning?, Proc. of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition, CVPR 2020, IEEE, 2020, pp. 1468–1477 . 

57] K. Santosh , L. Wendling , S. Antani , et al. , Overlaid arrow detection for labeling
regions of interest in biomedical images, IEEE Intell Syst 31 (3) (2016) 66–75 . 

58] H. Xu , C. Li , M.M. Rahaman , Y. Yao , Z. Li , J. Zhang , F. Kulwa , X. Zhao , S. Qi ,
Y. Teng , An enhanced framework of generative adversarial networks (EF–

GANs) for environmental microorganism image augmentation with limited ro- 
tation-Invariant training data, IEEE Access 8 (2020) 187455–187469 . 

Jinghua Zhang was born in 1996. He received his B.E. 

degree from Hefei University, PR China, in 2018. He is 
currently pursuing the master’s degree with the Research 

Group for Microscopic Image and Medical Image Analysis, 
Northeastern University, China. He will pursue the Ph.D. 

degree at National University of Defense Technology from 

the fall of 2021. His research interests are microorganism 

image analysis and deep learning. 
16 
Chen Li received his B.E. degree from the University of 

Science and Technology Beijing, China in 2008, M.Sc. de- 
gree from the Northeast Normal University, China in 2011, 

and Dr.- Ing. degree from the University of Siegen, Ger- 

many in 2016. From 2016 to 2017, he worked as a post- 
doctoral researcher in the Johannes Gutenberg University 

Mainz, Germany. Currently, he is working as an asso- 
ciate professor in the Northeastern University, China. He 

is the head of the Research Group for Microscopic Image 
and Medical Image Analysis in the Northeastern Univer- 

sity. His research interests are microscopic image analysis, 

medical image analysis, machine learning, pattern recog- 
nition, machine vision, multimedia retrieval and mem- 

rane computing. 

Sergey Kosov received his Diploma in Applied Mathe- 

matics from the Kirgiz-Russian Slavic University, Kirgyzs- 
tan in 2004, and M.Sc. degree in Computer Science from 

the Saarland University, Germany in 2008. From 2008 to 
2013, he worked as a researcher in the Max Plank In- 

stitute for Informatics and Leibniz University, Germany. 

From 2013 he worked for industrial companies and in 
2017 joined Pattern Recognition Group in University of 

Siegen as an external Ph.D. student. He received Dr.- 
Ing. degree in the University of Siegen, Germany in 2018. 

Currently he is a lecturer in Jacobs University, Germany. 
His research interests include classification with condi- 

tional random fields and deep neural networks, motion 

stimation with optical flow, 3-D reconstruction as well as ray tracing algorithms 
or realistic image synthesis. 

Marcin Grzegorzek received his doctor of engineering de- 
gree in statistical pattern recognition from the University 

of Erlangen-Nürnberg in 2007, worked as postdoc for the 
Queen Mary University of London and the University of 

Koblenz-Landau, was assistant professor of pattern recog- 
nition at the University of Siegen. Currently, he is profes- 

sor of medical informatics at the University of Lübeck. His 

scientific interests include medical data science, pattern 
recognition, machine learning and pervasive computing. 

Kimiaki Shirahama received his B.E., M.E. and D.E de- 
grees in Engineering from Kobe University, Japan in 2003, 

2005 and 2011, respectively. After working as an assis- 
tant professor in Muroran Institute of Technology, Japan, 

he worked as a postdoctoral researcher at Pattern Recog- 
nition Group in University of Siegen, Germany from 2013 

to 2018. Since 2018, he is working as an associate profes- 

sor at Kindai University, Japan. His research interests in- 
clude multimedia data processing, machine learning, data 

mining and sensor-based human activity recognition. He 
is a member of ACM SIGKDD, ACM SIGMM, the Institute 

of Image Information and Television Engineers in Japan 
(ITE), Information Processing Society of Japan (IPSJ) and 

he Institute of Electronics, Information and Communication Engineering in Japan 

IEICE). 

Tao Jiang received his Ph.D. degree from the University of 

Siegen, Germany, in 2013. He is currently a full professor 
with the Chengdu University of Information Technology 

(CUIT), China. He is also the Dean with the Control En- 
gineering College of CUIT. His research interests include 

machine vision, artificial intelligence, robot control, self- 
driving auto, and membrane computing. 

http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0042
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0045
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0046
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0052
http://arxiv.org/abs/1702.05970
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0054
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0055
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0056
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0056
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0056
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0056
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0056
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0057
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0057
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0057
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0057
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0057
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058
http://refhub.elsevier.com/S0031-3203(21)00072-8/sbref0058


J. Zhang, C. Li, S. Kosov et al. Pattern Recognition 115 (2021) 107885 
Changhao Sun was born in 1995. He received his B.E. 

degree from the Northeastern University, China, in 2018. 
From 2018 till now, he is a master student in the Research 

Group for Microscopic Image and Medical Image Analysis 

in the Northeastern University, China. His research inter- 
ests are microsocpic image segmentation and deep learn- 

ing. 

Zihan Li was born in 1995. He received his B.E. degree 
from the Northeastern University, China, in 2018. From 

2018 till now, he is a master student in the Research 

Group for Microscopic Image and Medical Image Analysis 
in the Northeastern University, China. His research inter- 

ests are micoorganism image retrieval and deep learning. 
17 
Hong Li is currently an associate professor of the North- 

eastern University, China, and she is a young director of 
the Artificial Intelligence Branch of the Biomedical En- 

gineering Society. She received her B.E. and M.Sc. de- 

grees from Dalian University of Technology, China and re- 
ceived her Ph.D. degree from the Northeaster University, 

China. She also worked as an engineer in the Neusoft 
Medical System Co., Ltd. Her research areas include ma- 

chine learning and application, neuroinformatics, biomed- 
ical imaging. 


	LCU-Net: A novel low-cost U-Net for environmental microorganism image segmentation
	1 Introduction
	2 Related work
	2.1 Classical segmentation methods
	2.2 Machine learning based segmentation methods

	3 LCU-Net based EM image segmentation method
	3.1 LCU-Net
	3.1.1 Basic knowledge of U-Net
	3.1.2 Basic knowledge of inception
	3.1.3 The structure of LCU-Net

	3.2 Post-processing with dense CRF

	4 Experiments
	4.1 Experimental settings
	4.1.1 Image dataset
	4.1.2 Training, validation and test data setting
	4.1.3 Experimental environment
	4.1.4 Hyper parameters

	4.2 Evaluation metrics
	4.3 Evaluation of segmentation methods
	4.3.1 Evaluation of different BLOCKs
	4.3.2 Comparison with other methods
	4.3.3 Comparison with local-Global CRF segmentation
	4.3.4 Repeatability tests


	5 Conclusion and future work
	Declaration of Competing Interest
	Acknowledgements
	References


