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Abstract

Finger vein recognition is an emerging biometric recognition technol-
ogy. Different from the other biometric features on the body surface, the
venous vascular tissue of the fingers is buried deep inside the skin. Due to
this advantage, finger vein recognition is highly stable and private. Fin-
ger veins are virtually impossible to steal and difficult to interfere with
by external conditions. Unlike the finger vein recognition methods based
on traditional machine learning, the artificial neural network technique,
especially deep learning, it without relying on feature engineering and
have superior performance. To summarize the development of finger vein
recognition based on artificial neural networks, this paper collects 149
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related papers. First, we introduce the background of finger vein recogni-
tion and the motivation of this survey. Then, the development history of
artificial neural networks and the representative networks on finger vein
recognition tasks are introduced. The public datasets that are widely
used in finger vein recognition are then described. After that, we summa-
rize the related finger vein recognition tasks based on classical neural net-
works and deep neural networks, respectively. Finally, the challenges and
potential development directions in finger vein recognition are discussed.
To our best knowledge, this paper is the first comprehensive survey
focusing on finger vein recognition based on artificial neural networks.

Keywords: Finger vein recognition, Artificial neural networks, Deep
learning, Convolutional neural networks, Image analysis

1 Introduction

The identity verification system, crucial in various domains like account
access, online transactions, and ATM usage, ensures user privacy security.
Classical passwords, although widely used, suffer from inefficiency due to time-
consuming input, potential leakage, and weak anti-attack measures. However,
with the advancement of technology, biometric recognition systems, utilizing
physical and behavioral traits like face [1], voice [2], and fingerprint [3], are
increasingly prevalent in authentication scenarios [4]. The typical workflow
of a biometric identity verification system involves registration and matching
phases. During registration, original biometric data undergoes preprocessing
to create feature representations, which are then stored in a database. In
the matching process, the data is encoded similarly to the registration phase
and compared with stored prototypes for identification. Biometric recognition
technology surpasses traditional secure identification processes in efficiency
and security stability, offering convenience amidst rising demand for digital
security systems. Particularly, fingerprint-based systems prevalent in home
security alleviate the need for password memorization or key carrying [5].
Moreover, diverse biometric methods like facial, handwriting, and voice recog-
nition play pivotal roles in crime investigation and financial services, ensuring
access only for authorized users. Besides, such as finger veins, retina, iris [6],
and gait [7] are widely employed. While each biometric feature has distinct
applications and characteristics detailed in Tab. 1, they encounter various chal-
lenges. Fingerprint recognition is susceptible to surface variations and forgery,
voice recognition requires quiet environments, and iris systems necessitate
costly sensors and environmental considerations. Additionally, discrepancies
between user-generated face data and system registration can impede facial
recognition [8].

Different from the above biometric features, Finger Vein Recognition
(FVR) has many advantages since it utilizes the feature extracted from the
intrinsic physiological structure of organisms. It matches the vascular feature
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Fig. 1 The general workflow of biometric identity verification system.

Table 1 Several biometric recognition technologies [7, 9, 10]. N represents non-contact. C
represents contact. RF represents radio frequency. NIR represents near-infrared.

Feature Security Obstruction Data Device Contact Cost

Face Normal Illumination Image Camera N Low

Voice Normal Noise Audio Microphone N Low

Fingerprint Good Skin surface Image
Optical sensor
Thermal sensor
RF sensor

C Low

Iris Superior Glasses Image Special camera N High

Retina Good Glasses Image Special camera N Middle

Gait Normal
Personal appearance
Filming angle

Video
Foot pressure
Velocity
Frequency

Camera
Floor sensor
Accelerometer
Radar

N Low

Signature Normal Randomness of writing
Image
Writing pressure
Writing posture

Scanner
Electronic tablet &
Electronic pen

N Low

Finger vein Superior Few Image
NIR sensor &
NIR sensitive camera

N Low

extracted from the human finger with the previously registered prototypes to
perform the recognition task. Since the finger veins are hidden deep beneath
the skin surface, and it is usually observed by the Near-Infrared (NIR) light [11]
instead of the visible light [12], this characteristic makes FVR-based secu-
rity systems more private than other biometric-based recognition methods.
In addition to privacy, FVR also has the characteristics of uniqueness and
stability. Even between identical twins, their finger vein structures are differ-
ent from each other [13]. Besides, finger veins can maintain their structures
with age [13]. Due to the above-maintained advantages, FVR is challenging
to be affected by external factors. Compared with other biometric recognition
approaches, finger veins are virtually impossible to steal, which brings FVR
strong security. In addition, The FVR is more hygienic because its acquisition
is non-contact, avoiding public health infections [13], and more efficient due to
the small size image it processes. AI technology, especially DL technology, has
developed rapidly in recent years. Compared with traditional image processing
methods, DL achieves overwhelming performance in many tasks of computer
vision, such as biometric recognition [14], biomedical image analysis [15], and
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autonomous driving [16]. The traditional FVR process usually includes image
capture, image data pre-processing, feature extraction, and matching or other
analysis tasks. The application of DL-based methods, especially Convolutional
Neural Networks (CNNs), dramatically changes the manual feature extraction
process. The performance of conventional Machine Learning (ML) approaches
is significantly influenced by feature engineering, in which the feature selec-
tion is based on human domain knowledge. Nevertheless, CNNs can extract
abstract but efficient features by supervised or semi-supervised learning. DL-
based methods have highly simplified the recognition process. Due to this
significant advantage of DL, DL-based methods are widely used in FVR tasks.

The traditional feature extraction methods depend on prior knowledge,
and designing a manual feature extraction algorithm for FVR usually requires
the knowledge of finger vein anatomy, information coding, and computer
vision [17]. These traditional feature extraction methods are complex and
gradually bottlenecked due to the requirement of prior knowledge. Since the
widespread use of ANN technology, especially DL, the traditional image fea-
ture extraction process has been dramatically changed. ANN-based FVR is
attracting attention as a high-performance second-generation biometric tech-
nology [18]. To comprehensively describe the application of ANNs on FVR,
this paper reviews classical neural networks and deep neural networks used in
FVR. Although there are some existing surveys on FVR, none provide a com-
prehensive view of the application of ANNs. To figure out our contribution and
the difference between our paper and other surveys, we discuss recent surveys
on FVR [17, 19, 20] in the following parts. In [19], the technology involved
in each step of the traditional FVR workflow, such as pre-processing, feature
extraction, and matching, is presented. Some traditional ML methods and DL
methods for FVR are also discussed. [17] summarizes the feature extraction
methods commonly used in FVR. Besides, this survey compares the charac-
teristics between traditional feature extraction methods and feature learning
methods. However, the ANN technique mentioned in these papers is not sys-
tematic and comprehensive enough. [20] focuses on the software development
design and the hardware development design of FVR is presented. Besides,
this paper summarizes the challenges of FVR in several aspects. Neverthe-
less, this paper lacks a summary of related technical papers. These surveys are
comprehensive and novel, providing summaries of FVR from different aspects.
However, these surveys present a non-negligible drawback. ANN, a critical
technology in FVR, is not comprehensively elaborated in these surveys, and the
existing FVR surveys lack an overall summary of ANN’s wide range of applica-
tions in FVR. Inspired by these papers, we have conducted this comprehensive
survey of ANN-based FVR. From classical neural networks to deep neural net-
works, our survey provides a comprehensive summary of ANN applications in
FVR. To conduct this paper, we summarized 149 papers in the field of ANN-
related FVR from 2004 to 2022, covering tasks such as verification, image
enhancement, segmentation, Presentation Attack Detection (PAD), Template
protection of finger vein images. These papers are collected from mainstream
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academic datasets or search engines, including IEEE Xplore, Springer, Else-
vier, ACM, MDPI, World Scientific, and Google Scholar. We use “finger vein
image analysis” AND (“deep learning” OR “neural network” OR
“ANN” OR “CNN” OR “GAN” OR “RNN” OR “LSTM”) as the
searching keywords. FVR is intimately connected with ANN technology, and
the related keyword knowledge graph is shown in Fig. 2a.
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Fig. 2 (a) The knowledge graph uses “Artificial Intelligence”, ” Artificial Neural Network”,
”Deep Learning”, ”Finger Vein Recognition” as keywords, it elaborated on the ANN domain
knowledge related to FVR, essentially DL. (b) The structure of this paper. * represents the
details will be presented in the corresponding chapter.

The contributions of this paper are as follows:

• To the best of our knowledge, this is the first comprehensive survey summa-
rizing the application of ANNs, including classical neural networks and deep
neural networks in FVR. To conduct this survey, we discuss 149 relevant
papers. In addition, we briefly describe the history of ANN development and
summarize the commonly used public datasets in the FVR domain.

• We divide the involved ANNs into two types, classical neural networks and
deep neural networks. In classical neural networks, we follow the traditional
image process of the biometric recognition paradigm for analysis, including
pre-processing, feature extraction, and matching.

• In deep neural networks, we follow the different image analysis tasks
for summary, including verification, image enhancement, segmentation,
PAD, Template protection, multimodal biometric recognition, image quality
assessment, feature extraction, and ROI extraction.

• We have compiled some of the challenges encountered in FVR and provided
potential directions for the development of FVR.

The structure of this survey is as follows: Various deep neural network algo-
rithms are the cornerstone of ANN-based FVR. In Sec. 2, we introduce the
development history of ANN and highlight its groundbreaking achievements.
We also introduce the representative deep neural networks in DNN. Since ANN
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relies on data-driven, finger vein data is also critical in influencing FVR per-
formance. The public datasets widely used for FVR are illustrated in Sec. 3.
We present the ANN-based FVR technique in two parts: classical neural net-
works and deep neural networks. In Sec. 4, we summarize the application of
classical neural networks on FVR according to the recognition workflow. Sec. 5
presents the summary of tasks of deep neural networks on FVR according to
the different tasks. In Sec. 6, we outline the potential directions of FVR. Sec. 7
summarized the entire paper. The specific content of each section in this survey
is shown in Fig. 2b.

2 ANN

Since our work focuses on applying ANN to FVR, we briefly describe the
development history and breakthrough discoveries of ANN and introduce the
representative deep neural network structures widely used in FVR. At the
same time, transfer learning, which is widely used in FVR, is also included in
our discussion. The specific structure of this section is shown in Fig. 3.

The structure of this review
Introduction (Section 1)

Biometric recognition (Section 1.1)
Finger vein recogntion (Section 1.2)
The motivation about this review (Section 1.3) 

ANN (Section 2)
The development history of ANN (Section 2.1)
Representative deep neural networks* (Section 2.2)

Datasets (Section 3)

Representative deep neural networks (Section 2.2)

AlexNet (Section 2.2.1)
VGGNet (Section 2.2.2)
GAN (Section 2.2.3) 
U-Net (Section 2.2.4)

Capsule network (Section 2.2.5)
GNN (Section 2.2.6)

 

Typical networks

Novel networks

Fig. 3 The structure of section “ANN”. The contents of this section include “The devel-
opment history of ANN” and “Representative deep neural networks”.

2.1 The development history of ANN

ANN is a computational model designed to mimic biological neural networks.
The structure of basic ANN, MLP, is shown in Fig. 4. ANN consists of multiple
nodes interconnected with each other, and nodes between two adjacent lay-
ers are given different connection weights to extract features from the original
information. Each node in the ANN performs forward propagation by receiving
the output from one or more nodes of the previous layer. ANN uses the inter-
connection between nodes to perform mathematical modeling to solve complex
problems. Nowadays, ANN has achieved great success on many tasks. However,
these achievements have been obtained by many AI scientists through contin-
uous research for up to half a century. To finger out the developing process of
ANNs, we provide an overview of it in Fig. 5.

The starting date of ANN research can be traced back to the 1940s. In 1943,
McCulloch and Pitts were inspired by biological neurons to propose the first
artificial neuron model, the M-P model, [21]. More details are shown in Fig. 6.
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Fig. 4 Typical ANN structure represented by MLP.

This model is implemented through a physical network, consisting of resistors
and other elements. It can be used to perform simple logical operations. Based
on the M-P neuron. Rosenblatt proposed the perception in 1958 [22]. This
model is capable of determining the weights between neuronal connections
after training. Perception led to the first boom in ANN research. However,
in 1969, Minsky and Papert pointed out that perception could not solve the
linear indivisibility problem, XOR problem [23]. This finding brought ANN’s
research to a low ebb.

In 1983, Hopfield created a stir in the ANN field by proposing the Hopfield
Neural Network (HNN) that used associative memory [24]. HNN achieved the
best result on the traveling salesman problem [25]. HNN has brought the pre-
viously lukewarm ANN back into the limelight of scientists. After that, Hinton
proposed the famous Boltzmann machine, a randomized HNN [26]. However,
the emergence of Back Propagation (BP) algorithms led to the second wave
of ANN research. In 1986, McCulloch and Rumelhart proposed the BP algo-
rithm [27] and applied it to Multi-layer Perceptron (MLP) that can solve the
XOR problem. In 1989, LeCun et al. introduced convolutional layers into ANN
by the biological primary visual cortex. They also introduced the BP algorithm
into the network and achieved great success in Handwritten Digit Recognition
(HDR) tasks [28, 29]. The BP algorithm is one of the most successful and
fundamental ANN algorithms. Even now, it is still an essential element in the
training process of ANN. Although ANN can model complicated patterns and
forecast issues by increasing the number of hidden layers and neurons, the com-
puter performance at that time was so limited that it was almost impossible
to train a large-scale ANN. Additionally, the overfitting problem also hindered
the development of ANN. With the popularity of ML methods, especially Sup-
port Vector Machine (SVM) [30], the research related to ANN gradually fell
into a depression for the second time. Despite the dilemma of ANN research,
Hinton and Bengio et al. still focused on ANN research [31–40]. In 2006, [33]
proposed a Deep Belief Network (DBN), which employed the Layer-wise pre-
training strategy. After the pre-training, the weights in DBN were fine-tuned
with the BP algorithm. This approach made it possible to train a deep ANN
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Fig. 5 Representative results of ANN’s development history.
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Fig. 6 M-P neurons are modeled according to the physiological structure of the biological
neurons, especially the function of dendrites and axons on biological neurons. Dendrites
can receive stimuli and transmit excitation to the cell body, and axons can transmit their
excitation to other neurons. This constitutes the basic function of artificial neurons.

at that time. Besides, The deep neural network based on the pre-training
strategy achieved significant breakthroughs in speech recognition tasks [39].
Meanwhile, the remarkable AlexNet designed by Hinton and Krizhevsky [40]
won first place in ImageNet ILSVRC-2012. Benefiting from these outstanding
achievements, the ANN technologies represented by DL attracted researchers’
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attention again. Recently, with the significant improvement in computer per-
formance, the training cost of deep neural networks has decreased. In addition,
the amount of data available for network learning has increased greatly com-
pared to before, which can well avoid the problem of overfitting caused by
limited data. With the above progress, ANN has once again reached a climax.

2.2 Representative deep neural networks

As mentioned above, training a complex neural network is no longer diffi-
cult due to the development of computer hardware and ANN technology. To
figure out the application trend of deep neural networks in FVR, we perform
frequency statistics based on the literature we summarized. The details are
provided in Fig. 7. To better understand these popular networks, their char-
acteristics are briefly summarized. Besides, since U-Net is widely used in the
finger vein image segmentation tasks, we also introduce the stricture of U-Net.
Some novel networks that have great potential to be applied to FVR tasks
are also introduced in this section, including the capsule network and Graph
neural network (GNN).
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Fig. 7 The frequency of deep neural networks on FVR tasks.

2.2.1 AlexNet

AlexNet is a milestone network because it is the first CNN that won first place
in the ILSVRC 2012. Before it, the development of neural network technology
was at a low ebb for many years. Since the success of AlexNet, deep CNNs
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have become the mainstream technology in many computer vision tasks [41].
AlexNet has 600 million parameters and 650,000 neurons. As the structure
of AlexNet shown in Fig. 8, it contains five convolutional layers and three
fully connected layers with 4096, 4096, and 1000 neurons, respectively [40].
AlexNet uses overlapping pooling instead of convolutional pooling and uses the
Rectifed Linear Unit (ReLU) as the activation function because it is faster in
gradient descent than a saturated nonlinear function. The equation of ReLU is
formulated in Eq.(1). Additionally, AlexNet was trained on multi-GPUs, since
the performance of GPU was limited at that time [40]. To avoid overfitting,
AlexNet utilized data augmentation and dropout operations.

f(x) =

{
0 x < 0
x x ≥ 0

(1)

2.2.2 VGGNet

Compared with AlexNet, the significant contribution of VGGNet is only using
3 × 3 convolutional kernels instead of large convolutional kernels used in
AlexNet to compose the network structure. This innovation reduces the param-
eters while enhancing the nonlinear fitting ability of the network. There are
various structures of VGGNet in the earliest research of [42]. Among them,
VGG-16 and VGG-19 are the most widely used. The detailed structures are
shown in Fig. 8, VGG-16 consists of 13 convolutional layers, five max-pooling
layers, and three fully connected layers. VGG-19 has three more convolutional
layers. There are 138 million and 144 million parameters in VGG-16 and
VGG-19, respectively [42].

2.2.3 ResNet

In theory, deeper network structures typically yield superior performance due
to their capacity for extracting more efficient features. However, excessively
deep networks are susceptible to issues like gradient explosion or vanishing [43].
To address this, [44] introduced the Residual Network (ResNet) in 2015, which
won first place in ILSVRC 2015. ResNet enhances information propagation
efficiency by incorporating shortcut connections between convolutional layers,
forming residual units within the network. In a residual unit, the input x pro-
duces a feature map H(x), which is split into identity mapping x and residual
mapping H(x)−x, as shown in Eq.(2). This design enables ResNet to circum-
vent gradient vanishing during backpropagation, facilitating the training of
deeper networks. Consequently, ResNet can learn more useful features, leading
to improved performance compared to shallower networks.

H(x) = x︸︷︷︸
Identity mapping

+ [H(x) − (x)]︸ ︷︷ ︸
Residue mapping

(2)
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Fig. 8 The structure of representative networks. (a) AlexNet. (b) VGG-16. (c) VGG-19.
(d) ResNet. (e) GAN. (f) U-Net.

2.2.4 Generative adversarial network

The Generative Adversarial Network (GAN) introduced by [45] is a leading
DL algorithm for image generation. Unlike classification neural networks, GAN
consists of a generator and a discriminator. The generator produces fake sam-
ples to deceive the discriminator, which distinguishes between real and fake
samples. During training, the generator learns from random noise to mimic
real data, while the discriminator learns to differentiate between real and
fake samples. The generator updates based on the discriminator’s predictions
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through a loss function. After sufficient training, when the generator fools the
discriminator, the network parameters are fixed for image generation.

2.2.5 U-Net

U-Net is a popular fully convolutional network for image segmentation, initially
used for biomedical image segmentation. As shown in Fig. 8, the network
structure of U-Net is symmetrical and includes a compressed path to extract
features and an extensive path to perform up-sampling. This network structure
can achieve precise segmentation with few images since it takes advantage of
data augmentation.

2.2.6 Capsule network

CNNs deepen on deep structure to learn global information, but they struggle
to capture spatial relationships and feature interdependencies. Pooling oper-
ations in CNNs often lead to information loss. Addressing these limitations,
[46] introduced capsule networks as a more effective image processing archi-
tecture. Capsule networks use capsules instead of standard neurons to retain
feature information. Each capsule, represented as a vector, encapsulates multi-
ple neurons, with its mode indicating feature recognition strength and direction
conveying positional information. Capsule parameters encode feature location
variations, enabling the network to retain spatial information. Unlike tradi-
tional CNNs, capsule networks employ dynamic routing algorithms instead of
backpropagation for weight training among capsules, as illustrated in Table 2.

Table 2 Difference between capsule network and CNN [46].

Operation Capsule network CNN

Input vector ui scalar xi

Transform ûj|i = Wijui -

Weighted summation sj =
∑

i cijûj|i aj =
∑

i wixi + b

Activation vj =
∥sj∥2

1+∥sj∥2

sj

∥sj∥ hj = f(aj)

Output vector vi scalar hi

2.2.7 Graph neural network

As a data structure consisting of vertices and edges, the graph can store rich
information and represent relationships between information [47]. To learn the
graph structure, GNN is proposed as a variant of CNN [48]. The structure
of GNN is defined by the node and connection matrix. GNN represents a
new node by aggregating adjacent feature vectors and extends the traditional
convolutional layers to the non-Euclidean space to capture the information in
a graph structure. Finger vein features can be considered a graph structure
because of the interlocking venous vascular lines embedded in images.
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3 Datasets

As DL occupies an important position in the research field of AI, it is
also widely used in FVR task [49]. DL is a data-driven learning paradigm
that aims to learn effective features based on abundant training data to
perform the analysis task. Therefore, the dataset plays an essential role in
the development of DL. In this section, we introduce the commonly used
datasets in FVR. By investigating relevant papers, we conduct a statistic
to summarize the usage frequency of various FVR datasets. The details are
demonstrated in Fig. 9. It can be found that the popular datasets for FVR
mainly include SDUMLA-HMT [50], FV-USM [51], HKPU [52], MMCBNU-
6000 [53], UTFVP [54], THU-FVFDT [55, 56], SCUT [57], and IDIAP [58].
The fundamental information of these datasets is provided as follows:
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Fig. 9 The frequency of all datasets on FVR tasks.

SDUMLA-HMT is a homologous multi-modal traits database contain-
ing multiple biometric features such as the face, finger veins, gait, iris, and
fingerprints. The finger vein part of SDUMLA-HMT is the first publicly avail-
able finger vein dataset, consisting of 3816 images. These images were collected
from each of the six fingers of 106 people, and six images were collected from
each finger.

FV-USM contains 5904 images obtained from 123 volunteers, including
93 males and 40 females, ranging in age from 20 to 50. The image collection
process was divided into two stages. The time gap between these two stages
is more than two weeks. Each person provided four fingers for image capture.
For each image collection stage, six images were taken for each finger.



Springer Nature 2021 LATEX template

14 Article Title

HKPU contains 6264 images acquired from 156 subjects. Half of these
images are finger vein images, and the rest are finger texture images. 93% of the
subjects are younger than 30 years old. Images were acquired in two separate
sessions with a minimum interval of one month and a maximum interval of
six months. The average interval is 66.8 days. In each session, every subject
provided six samples. Each sample contains one vein image and one finger
texture image.

MMCBNU-6000 contains 6000 finger vein images collected from 100
volunteers from 20 different countries. These volunteers have different skin
tones. Each subject provided their index finger, middle finger, and ring finger,
and each finger was photographed ten times in an office environment (rather
than a dark environment).

UTFVP contains 1440 vascular pattern images obtained from 60 vol-
unteers. These images were captured in two sessions. The average time gap
between these sessions is 15 days. The vascular pattern of the six fingers from
each subject was taken two times.

THU-FVFDT contains two versions. The first version, THU-FVFDT1,
contains 440 finger vein images from 220 subjects. The second version, THU-
FVFDT2, contains 2440 finger vein and finger dorsal texture images from 610
subjects. Both datasets were acquired with only one finger of each subject,
and their image acquisition process was finished in two sessions.

SCUT contains 10800 images acquired from 100 subjects. Each subject
provided six fingers, and each finger was photographed 18 times. For each
finger, the first six images were taken in a normal posture, and the last 12
images were taken at a rotational angle of less than 20 ◦.

IDIAP consists of 880 cropped and full versions of real and faked images
from 110 subjects, and these subjects were from different races. Half of these
images are real acquisitions, and half are fake. The fake images are created
based on some images of the VERA dataset after the simple pre-processing.
This dataset is mainly used for PAD.

To summarize the above-mentioned datasets, the crucial information of
these datasets is provided in Tab. 3.

Table 3 Detail of public datasets that widely used in FVR. SN represents subject
number. IN represents image number. M represents middle finger. I represents index
finger. R represents ring finger. No. FS represents number of finger for each subject.

Dataset SN IN No. FS Resolution URL

SDUMLA-HMT [50] 106 3816 6 (both M, I, R) 320× 240 http://mla.sdu.edu.cn/info/1006/1195.htm

FV-USM [51] 123 5904 4 (both M, I) 640× 480 http://drfendi.com/fv usm database/

HKPU [52] 156 6264 2 (left M, R) 513× 256 http://www4.comp.polyu.edu.hk/ csajaykr/fvdatabase.htm

MMCBNU-6000 [53] 100 6000 6 (both M, I, R) 640× 480 http://multilab.jbnu.ac.kr/MMCBNU 6000

UTFVP [54] 60 1440 6 (both M, I, R) 672× 380 https://pythonhosted.org/bob.db.utfvp/

THU-FVFDT1 [55] 220 440 1 (left I) 200× 100 https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html

THU-FVFDT2 [56] 610 2440 1 (left I) 200× 100 https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html

SCUT [57] 100 10800 6 (both M, I, R) 640× 480 https://github.com/SCUT-BIP-Lab/SCUT-RIFV

IDIAP [58] 110 440 4 665× 250 https://www.idiap.ch/dataset/vera-fingervein/index html
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4 Classical neural network for finger vein
recognition

In the early stage of ANN application to FVR, ANNs with shallow layers and
small parameter counts are unable to complete end-to-end FVR independently.
Additional pre-processing, feature extraction, and other methods are usually
needed to help ANNs complete the entire FVR process. In this section, we
follow the biometric recognition process to summarize the application of clas-
sical neural networks on FVR, including pre-processing, feature extraction,
and matching. A detailed description of these steps helps to present a full
panorama of the application of classical neural networks to FVR. These ANNs
transmit information through weighted connections between artificial neurons
instead of convolutional layers. The specific structure of this section is shown
in Fig. 10.

Datasets (Section 3)
Classical neural networks for FVR * (Section 4)
Deep neural networks for FVR* (Section 5)
Challenges and potential direction (Section 6)

Challenges of FVR* (Section 6.1)
Potential development direction of FVR* (Section 6.2)

Classical neural networks for FVR (Section 4)
Pre-processing (Section 4.1)
Feature extracton (Section 4.2)
Matching (Section 4.3)
Summary (Section 4.4)

Fig. 10 The structure of section “Classical neural networks for FVR”, the context of this
section include “Pre-processing”, “Feature extraction”, “Matching”, and “Summary”.

Meanwhile, we summarize the overall image processing flow of the tradi-
tional FVR method, as well as the representative methods in preprocessing,
feature extraction, and classification, as shown in Fig. 11.

Pre-processing

ROI extraction

Pre-processing operations

Vein segmentation

Feature extraction
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Wavelet transformation
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Feature extraction operations

Matching Result
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Local internection neural network
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MLP
i

Matching operations
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Fig. 11 Representative methods for each stage of the traditional FVR process. Classical
neural networks play an integral role in both the feature extraction phase and the matching
phase. a-d are pre-processing operations: ROI extraction, vein segmentation, wavelet trans-
form, and image enhancement. The four images in image enhancement are the original finger
vein image, Gamma enhancement, gray-scale conversion, and contrast enhancement. e-g are
feature extraction operations. h-i are matching operations. It is important to note that the
schematic only shows representative methods and does not encompass all methods.
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4.1 Pre-processing

The purpose of image pre-processing is to enhance the effectiveness of the
features of the object and suppress the features of other factors. Typical pre-
processing methods include image enhancement, filtering, segmentation, etc.
In the FVR tasks using classical neural networks, it is vital to pre-process the
finger vein images to make the finger vein features clearer. [59] uses multi-
scale self-adaptive enhancement transform based on wavelet to denoise and
enhance the finger vein feature in the finger vein images. The wavelet trans-
form is good at extracting point features. However, the finger vein images
exhibit more significant linear features than point features. To improve the
previous work, [60] proposes the multi-scale self-adaptive enhancement trans-
form based on curvelets. The method applies curvelets decomposition to finger
vein images making the pre-processing strategy not only have the local time-
frequency analysis capability of wavelets but also the differentiation capability
of direction selection and the identification capability of linear features. The
pre-processing steps in [61] are divided into four parts: vein-region division,
Gamma enhancement, Gary-scale, and contrast enhancement. Firstly, the vein
region is divided in the original image. After the feature of the vein region is
Gamma enhanced to obtain better image tones, followed by the conversation
of RGB image to grayscale using the Gary-scale method, and finally, the con-
tract of the image is enhanced. The above pre-processing method is complex,
but the pre-processing of some studies is straightforward, and it also helps
improve the network’s recognition performance. In [62], the range of pixel val-
ues is normalized, followed by ROI extraction and image enhancement. [63]
uses image cropping to highlight the finger vein region.

4.2 Feature extraction

Extracting venous features from finger vein images is a critical step in finger
vein verification. Although pre-processing techniques can improve the qual-
ity of images, the processed images still contain some irrelevant information,
which is inefficient to be used for model training directly. Feature extraction
techniques focus on extracting the required information from a large amount of
information and removing the irrelevant information to the maximum extent
possible. [59, 60] construct a local interconnection neural network to extract
features from pre-processed finger vein images. As shown in Fig. 12, this net-
work has seven columns with seven nodes in each column in the input layer,
seven nodes in the hidden layer, and one node in the output layer. Nodes in one
column of the input layer form a local interconnection structure with a node
in the hidden layer. This network reduces the computational effort of fully
connected networks, and both local and global information can be considered.

[61] uses the Radon transform to extract the feature. Radon transform
is a mathematical projection method that condenses the image’s information
in a few high-value coefficients on the transformed domain. In [62], repeated
line tracking, Gabor filter, and image segmentation are used to extract the
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Fig. 12 The structure of the local interconnection neural network [59, 60].

feature. The repeated line tracking method clears the irrelevant information by
removing irregular shadows generated by the thickness of the finger bones. The
Gabor filter is mainly used to detect the finger vein images’ length and width;
subsequently, the finger vein contour is segmented from the entire image.

In addition to these feature extraction methods mentioned above, PCA and
Linear Discriminant Analysis (LDA) are also applied to FVR [63–67]. PCA is
a common data dimensionality reduction method, which finds the most signif-
icant features from the high-dimensional features for retention, thus realizing
the dimensionality reduction of features and simplifying the computation. [66]
introduces LDA to extracting features. Analogous to PCA, LDA is a data
dimensionality reduction method that separates two or more classes by finding
a linear combination of features.

4.3 Matching

In the matching phase, the feature extracted from the row data is compared
with the finger vein information stored in the registration database for identity
verification. Since the finger vein structure contains feature points formed by
the intersection of vein lines, template matching based on pixel value is suit-
able for FVR. [59, 60] address the lack of robustness of traditional template
matching methods by identifying the blurred areas around the vein vessels and
ignoring the slick misalignments between vein patterns. The method is imple-
mented by relabeling the vein track space in the blurred region with pixel
values between 46 and 170.

ANNs show a powerful performance in matching step [61–67]. [64, 65] use
Adaptive Neuro-Fuzzy Inference Systems (ANFIS) to match the finger vein
features. The structure of ANFIS is a merger of an adaptive network and a
fuzzy inference system, which inherits the interpretability of the fuzzy infer-
ence system and the learning ability of the adaptive network. The ANFIS can
change the system parameters based on prior knowledge to make the output
closer to optimization [68]. These papers also conduct comparative experi-
ments using MLP based on the BP algorithm, and the experimental results



Springer Nature 2021 LATEX template

18 Article Title

show that ANFIS significantly outperforms MLP. [61] uses Radial Basis Func-
tion Neural Network (RBFNN) and Probabilistic Neural Network (PNN) to
perform the classification of finger vein images. The structures of RBFNN and
PNN are shown in Fig. 13. In RBFNN, the hidden layers provide the cluster-
ing ability in the classification process because its nodes consist of RBF that
realize the nonlinear transformation from the input space to the hidden space.
PNN is a supervised feed-forward neural network whose network structure is
built directly through the Parzen nonparametric probability density function.
The experimental results show that both RBFNN and PNN have rewarding
performance, achieving identification rates of 98.3% and 99.2%, respectively.
Additionally, the training time of PNN is shorter.

...
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φ : The Parzen nonparametric probability density function

Fig. 13 The structure of RBFNN and PNN [61]. (a) RBFNN. (B) PNN.

4.4 Summary

In the papers we summarized, the classical neural networks for FVR are most
used for classification, and only [59, 60] are used for feature extraction. This
may be because early ANNs had limited ability to extract venous features
since the networks were too shallow. Although their ANN-based feature extrac-
tion methods achieve great experimental results, the samples used in their
experiments are deficient. Experiments conducted on the small samples fail to
demonstrate the practical application of the model. Unlike classical neural net-
works, the PCA-based feature extraction method requires few pre-processing
steps and eventually achieves excellent performance, indicating that PCA has
a solid ability to abstract complex features. In the classification process, the
MLP based on the BP algorithm that is widely used in other tasks performs
poorly on FVR tasks, with Accuracy (ACC) rates lower than 50% in [64, 65].
Conversely, ANFIS achieves satisfactory performance. We have provided a
summary table for these papers in Tab. 4.
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5 Deep neural network for finger vein
recognition

This section introduces the FVR task based on deep neural networks. Since
deep neural networks are usually deep in layers with a huge number of param-
eters, they can perform not only general verification tasks end-to-end, but also
different image analysis tasks related to finger veins. To present a more com-
prehensive view of the application of deep neural networks in FVR, we will
present this section according to different image processing tasks, which are
verification, image enhancement, segmentation, PAD, template protection, and
other tasks. In addition, multi-biometric recognition, including finger vein, is
also discussed. The specific structure of this section is shown in Fig. 14

Datasets (Section 3)
Classicial neural networks for FVR* (Section 4)
Deep neural networks for FVR *  (Section 5)
Challenges and potential direction (Section 6)

Challenges of FVR* (Section 6.1)
Potential development direction of FVR* (Section 6.2)

Deep neural networks for FVR (Section 5)
Verification (Section 5.1)

Typical networks (Section 5.1.1)
AlexNet
ResNet
VGGNet
SqueezeNet
GAN

CAE (Section 5.1.2)

DBN (Section 5.1.3)
LSTM (Section 5.1.4)
Lightweight CNN (Section 5.1.5)
Custom CNN (Section 5.1.6)
other networks (Section 5.1.7)

Image enhancment (Section 5.2)
GAN (Section 5.2.1)
CAE (Section 5.2.2)
Other networks (Section 5.2.3)

Segmentation (Section 5.3)
U-Net (Section 5.3.1)
Other networks (Section 5.3.2)

PAD (Section 5.4)
Template protection (Section 5.5)
Multimodal biometric recognition (Section 5.6)

The fusion of two features (Section 5.6.1)
The fusion of various features (Section 5.6.2)

Other tasks (Section 5.7)
Summary (Section 5.8)

Fig. 14 The structure of section “Deep neural networks for FVR”. The context of this
section include “Verification”, “Image enhancement”, “Segmentation”, “PAD”, “Template
protection”, “Multimodal biometric recognition”, “Other tasks”, and “Summary”.

5.1 Verification

Verification is the most central task of FVR, which is designed to enable users
to identify themselves using their unique finger veins. Unlike the classical neu-
ral networks that require other techniques to complete the verification process,
deep neural networks can achieve feature extraction and classification using
only one network model, and additional pre-processing operations are not nec-
essary. Both the layer structure and the number of parameters of the deep
neural networks have a direct impact on the final verification performance
of the FVR, so the choice of the network model has a significant influence
on the DL-based FVR. In this section, we discuss the application of DL on
FVR according to the use of deep neural network structures. Firstly, we intro-
duce typical networks, which are very widely used in various computer vision
tasks, and then we introduce Convolution Auto-Encoder (CAE), DBN, Long
Short Term Memory LSTM, and Lightweight CNN. Finally, we introduce the
researchers’ own customized network structure for FVR with some advanced
networks that have been applied to FVR.
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5.1.1 Verification based on typical CNN

AlexNet

Since the pre-processing process of the traditional ML-based FVR method is
too complicated, [69] proposes an AlexNet-based finger vein verification sys-
tem to solve the problem. The AlexNet is used to extract feature vectors, and
Euclidean distance is used to calculate the distance between two feature vec-
tors for verification. The experimental results show that the method achieves
an Equal Error Rate (EER) of 0.21% on the private dataset, indicating that
the network can effectively discriminate the distance between intra-class and
inter-class. In [70], the finger vein texture features are first extracted by a local
coding method constructed by a set of fixed sparse predefined binary convolu-
tion filters. The features extracted by the local encoding method are robust to
rotation and illumination changes. These features are fed to pre-trained mod-
ified AlexNet for further learning. Finally, the SVM is used for classification.
The experimental results show that this method obtains an average ACC of
98.78% on the SDUMLA-HMT dataset.

[71, 72] design the modified AlexNet network for end-to-end learning.
In [71], The ROI extracted images are directly fed into AlexNet for classifica-
tion. The experiment achieves a correct rate of 99.53% on the SDUMLA-HMT
dataset. Compared with [71], the network in [72] is more lightweight and can
be deployed on Android platforms. Meanwhile, this system incorporates the
ResNet module and SENet module to enhance the ability of feature extraction.
This system reaches a recognition rate of 94.53%.

[73] proposes a network structure inspired by AleNxet. The research intro-
duces the densely connected layers to the base structure of AlexNet. The study
also compares the performance of two loss functions, Softmax and triplet-loss.
Based on the network structure designed in this research, Softmax and triplet-
loss achieve the ACCs of 97.00% and 97.35% on FV-USM, respectively. As
AlexNet was an early successful CNN for image classification, there are related
transfer learning methods on FVR using pre-trained AlexNet networks. [74, 75]
use a pre-trained and fine-tuned AlexNet network for classification. Using
transfer learning instead of initial tuning of network weights makes network
training faster.

ResNet

[76] proposes a real-time FVR system that employs a fusion loss to learn more
robust features by combining classification loss and metric learning loss, and
an inter-class data augmentation technique is used to solve the lack problem of
training data. In this system, ROI extraction and alignment are performed by
the method of [77], and the ResNet-18 based on the transfer learning technique
is used for feature extraction. This network employs cosine similarity as the
metric for matching. The specific flow of the whole system is shown in Fig. 15.
The experimental results show that the method achieves an EER of 0.48% on
FV-USM, which is significantly lower than other DL methods. [78] proposes a
FVR method based on ResNet and U-Net. Both network models are trained
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Fig. 15 The training stage of the real-time FVR system

[76].

by the end-to-end approach. The proposed method introduces bias field cor-
rection and spatial attention mechanisms. In this system, the contrast of the
original images is first adjusted by the bias field correction model, followed by
the inversion of the pixel values. The processed images are fed into the U-Net-
based spatial attention model for enhancing the selective region information.
Finally, ResNet-50 classifies the enhanced images. The method reduces the
impact of low-quality images, and makes the network can extract more signif-
icant features. The experimental results show that the method has a rank-one
verification rate of 99.53% on SDUMLA-HMT and 98.20% on THU-FVFDT2.
[79–81] propose improving CNN structures with the help of the residual idea
of ResNet rather than just using the original ResNet for image analysis tasks.
[79] proposes Efficient Channel Attention Residual Network (ECA-ResNet) to
enhance the practical application ability on FVR tasks. The ECA [82] can bring
significant benefits to the model with a small number of parameters, break-
ing the paradox between performance and complexity. [80] proposes a new
ResNet-based architecture, called FV2021. The network is compact and suit-
able for installation on mobile devices. FV2021 uses separable convolutional
layers instead of normal convolution layers to reduce the model complexity.
In [81], a novel ResNet-based network architecture, ResNext, is proposed.
This network is employed for classification, it has a homogeneous multi-branch
structure with only a few hyperparameters to tune, and this structure uses the
split-transform-merge strategy for scaling any large number of transformations
without the need for specialized design. Meanwhile, this model uses cutout [83]
as the data augmentation strategy. The specific structure of ResNext is shown
in Fig. 16. The model still outperforms the original ResNet even with the same
model complexity. As the extension of this method, [84] uses a neural architec-
ture search network for FVR. This network uses a controller neural network to
sample subnetworks with different structures. This approach is used to update
the parameters of the controller network to generate a better architecture. The
performance of this network is better than the previous ResNext.

VGGNet

[85, 86] use VGG-16-based CNN for finger vein verification. [85] resizes the
detected finger vein ROI to a 224 × 224 pixel image and then obtains the
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Fig. 16 The split-transform-merge strategy of ResNext [83].

difference image between the input finger vein ROI image and the registered
finger vein ROI image. The difference image is fed to the VGG-16-based CNN
model to directly obtain the matching results without the redundant image
pre-processing step. The experimental results show that the adjusted VGG-16
network achieves EERs of 0.396%, 1.275%, and 3.906% on three datasets with
different image quality (from high to low), respectively. VGG-16 also inspires
the network of [86], and this study uses a wide line detectortor [77] to extract
finger vein features from the normalized images in addition to simple ROI
extraction. The method achieves an EER of 0.42% on the private dataset.

SqNet

SqNet has fewer parameters without losing accuracy than other deep neu-
ral networks and is also used in some FVR tasks. [87] proposes a lightweight
SqNet that can be deployed on hardware platforms with limited computa-
tional power and memory. The study uses 3 Channel (3C) images as the
input of the SqNet. The 3C images are obtained by the different operations
between the input images and registered images. The SqNet can be fine-tuned
to achieve the most accurate performance by feeding 3C images into a net-
work that has been pre-trained on ImageNet. The experimental results fully
demonstrate that the method achieves high recognition rates while simplifying
the network structure, whose EERs of 1.889% and 4.906% on MMCBNU-6000
and SDUMLA-HMT, respectively. [88] uses pre-trained SqNet to extract the
features of the left finger vein and right finger vein and then uses SVM for
classification. This method significantly decreases the feature dimension. The
experimental results show that this feature fusion method achieves an ACC of
99.81% on SDUMLA-HMT and an ACC of 99.36% in one section of FV-USM.
The longitudinal rotation of fingers in the acquisition process can affect recog-
nition performance. To solve this problem, [89] proposes a neural network with
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robustness to longitudinal finger rotation by training the neural network using
finger vein images with different angles. These images from different angles
are from two places. One is captured from different angles, and another uses
a data augmentation strategy to simulate the longitudinal rotation of the fin-
gers. The study uses two networks, Triplet-SqNet and DenseNet-161, to train
these images separately. Experimental results on the PLUSVein dataset show
that training with images acquired from different angles leads to a more robust
model, especially Triplet-SqNet.

GAN

[90] proposes a novel structure termed FV-GAN based on Cycle-consistent
Adversarial Network (CycleGAN) to extract features and perform the veri-
fication of finger veins. The generator in the FV-GAN consists of an image
generator based on U-Net and a pattern generator based on an encoder-decoder
network. The pattern generator extracts the finger vein patterns from the
image and outputs the probability of each pixel belonging to the vein pattern,
and a binary discriminator is used for verification. In addition, FV-GAN uses
a fully convolutional structure to reduce the cost of computation. The experi-
mental results show that the EER of FV-GAN is 0.94% on SDUMLA-HMT and
1.12% on THU-FVFDT2. [91] proposes a GAN-based structure termed triplet-
classifier GAN, which combines a conditional generator and an angular triple
loss-based classifier. As shown in Fig. 17, the triplet-classifier GAN is used for
data augmentation and classification, and the data augmentation strategy can
enhance the training effect of the network. In addition, the cosine similarity is
used to replace the Euclidean distance in the designed angular triple loss to
improve the feature extraction ability. The experimental results show that this
model achieves the EERs of 0.05%, 0.14%, and 0.15% on SDUMLA-HMT, FV-
USM, and HKPU, respectively. [92] employs a Deep Convolutional Generative
Adversarial Network (DCGAN) to identify genuine and fake finger vein images.
The generator generates fake images from genuine images, and the discrimina-
tor is used to distinguish between genuine and fake images. The experimental
results show that DCGAN significantly improves the performance of finger vein
verification. The method can be used for forensic identification and biometric
verification of the finger vein. Traditional FVR systems are trained using one
type of data and have serious performance degradation problems when the
trained model is applied to different types of data. To improve the recognition
performance of the network on heterogeneous datasets, [93] proposes an FVR
system incorporating the domain adaptation technique based on CycleGAN.
All input samples are pre-processed and fed into CycleGAN to generate com-
posite images so that data from different domains have some similarity. Due to
the advantage of this method, the model generality is enhanced. The compos-
ite image is fed to DenseNet-161 for classification. This experiment is trained
on SDUMLA-HMT and tested on HKPU, and an EER of 0.85% is obtained.
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Fig. 17 Architecture of the triplet-classifier GAN [91].

5.1.2 Verification based on CAE

The CAE is a neural network architecture tailored for unsupervised learning,
particularly effective in processing image data. It consists of an encoder that
employs convolution layers to extract hierarchical features, followed by pool-
ing layers to reduce dimensionality. The encoded data is then transformed
into a lower-dimensional latent space representation. Subsequently, a decoder
reconstructs the original input using convolution transpose layers, striving to
preserve crucial features learned by the encoder. [94] proposes a finger vein
verification system that integrates CAE-based feature learning methods with
CNN. This system first extracts features from the finger vein images using
CAE. Then, these features are fed into the CNN to further depth feature
extraction and classification. Using this method, the recognition rate for the
FV-USM is 99.16%, and the EER is 0.16%. The workflow of [95] is similar
to [94]. CAE is used to learn features of a particular distribution from original
finger vein images, and SVM is used for classification. The experimental results
show that the method achieves an EER of 0.12% on FV-USM and 0.21% on
SDUMLA-HMT. [96] uses CAE to extract preliminary features from the image,
and then the parameters of the CAE are used to initialize the parameters of
the convolutional layers of a deep CNN. This deep CNN is used to classify the
finger vein images. Meanwhile, the Extreme Learning Machine (ELM) layers
are used to replace the fully connected layers after the training is completed.
Because the ELM has faster convergence and better generalization ability than
the traditional BP algorithm. The experimental results show that this method
achieves EERs of 98.88% and 98.58% on FV-USM and SDUMLA-HMT.

5.1.3 Verification based on DBN

The DBN is a type of deep neural network consisting of multiple layers
of latent variables, typically composed of Restricted Boltzmann Machines
(RBMs). DBN combines unsupervised pre-training of the RBMs with super-
vised fine-tuning to learn hierarchical representations of the input data. Each
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layer captures increasingly abstract features, with connections between layers
learned during the pre-training phase. [97, 98] proposes a feature fusion FVR
algorithm based on DBN and CNN. It uses the features extracted from DBN
and CNN and then uses the similarity measure for matching. To reduce the
learning and detection time of the model, feature points based on endpoint and
intersection are extracted using the feature extraction method based on eight
neighborhoods. These feature point sets are then used as inputs to the network,
simplifying the computation of the network and making it adaptable to mobile
terminals. The ACC of the method on the private dataset reaches 99.6%. [99]
proposes an FVR algorithm based on DBN and uniform LBP operator. The
texture features are extracted from the sub-blocks of finger vein curvature gray
images using the uniform LBP operator. This makes the learned feature con-
tain more vein information. Then, the histogram of the sub-block features is
computed and integrated into an overall histogram for training the DBN. The
experimental results show that the recognition rate of this method is 97.4%
on FV-USM.

5.1.4 Verification based on LSTM

The LSTM is a type of Recurrent Neural Network (RNN) architecture designed
to overcome the vanishing gradient problem and capture long-term dependen-
cies in sequential data. Unlike traditional RNN, LSTM incorporates specialized
memory cells with gating mechanisms, allowing them to selectively remember
or forget information over long time spans. Relying on this property, LSTM
can also capture complex spatial location information in vision tasks. [100] pro-
poses a network model for feature extraction by combining CNN and LSTM.
CNN represents the vein texture features in the local region, and LSTM is
used to capture the spatial location relationship within the region. This way
of extracting features considers the spatial location relationship between fea-
tures and makes the model more robust. Finally, the Hamming distance is used
for matching. The proposed LSTM-based network achieves an EER of 0.95%
on HKPU. [101] designs a bidirectional LSTM-based verification system. The
system uses ROI extraction and Gaussian filtering for pre-processing, followed
by feature extraction using bidirectional LSTM and shark smell optimiza-
tion algorithm to optimize the hyperparameters. Finally, Euclidean distance is
used for matching. The method surpassed the earlier methods, and the maxi-
mum ACC is 99.93%. The traditional FVR system requires the users to hold
their fingers for a few seconds to complete the verification process. [102] con-
ducts a real-time verification system of finger veins. The system can obtain the
user’s finger vein feature dynamically. The system extracts finger vein image
sequences from recorded videos and uses CNN to extract features from the
pre-processed sequences. Then, LSTM is used to find and track the temporal
dependencies within the input feature sequences for verification. The system
achieves an ACC of 99.13% on the collected dataset. The images in this dataset
were taken from different exposure times.
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5.1.5 Verification based on Lightweight CNN

Some deep neural networks achieve excellent performance by stacking layers
but lose the ability to be applied well because the models are too complex. To
let the networks perform verification tasks on mobile terminals, it is necessary
to explore the development of lightweight CNN on FVR tasks. [103, 104] use
lightweight CNN for FVR, and these network structures have a few convolu-
tional and fully connected layers. The network of [103] is end-to-end, and it is
trained by the joint supervise based on the center loss function and the Soft-
max loss function, which can obtain highly discriminative features for FVR.
[104] proposes a lightweight CNN to perform the classification task along
with feature extraction and optimization method of maximum curvature fin-
ger vein features based on the Gaussian filter, which reduces the influence
of image noise on recognition. The lightweight CNN proposed in [105] has
two structures using different loss functions, and these two architectures are
Closed-set (CS) architecture and Open-set (OS) architecture. The specific pro-
cess is shown in Fig. 18. The CS architecture uses Softmax to predict the class
of the input samples. The OS architecture in this study outputs the feature
vectors of the input samples and registered samples. The experimental results
show that the network achieves EERs of 2.29% and 0.47% on SDUMLA-HMT
and MMCBNU-6000. [106] designs a lightweight CNN model using a partially
pre-trained MobileNetV2 [107] as a backbone. The model achieves high per-
formance on FVR tasks by using pre-trained auxiliary blocks and customized
auxiliary blocks while simplifying the training process. This network achieves
the CIR of 96.98% on public datasets.
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Fig. 18 The details of the framework [105]. (a) The Proposed lightweight CNN. (b) CS
architecture. (c) OS architecture.

5.1.6 Verification based on custom CNN

To perform FVR tasks in a targeted manner, many studies use customized
deep network structures to analyze finger vein images. The researchers design
the number of layers and parameters of these networks according to the FVR
task without the help of representative deep neural networks such as AlexNet,
VGGNet, and ResNet.

[108, 109] use Curvature Gray Images (CGIs) instead of original finger vein
images as the input of the network. Their CGIs are obtained from 2D Gaussian
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templates, and CGIs are directly fed into customized CNN for classification.
These studies employ the improved activation function instead of ReLU. The
improved activation function has both the ReLU function’s sparsity and the
Softplus function’s smoothness. The ReLU and Softplus functions are shown
in Eq.(1) and Eq.(3). Eq.(4) illustrate this improved activation function. This
method is effective in resisting noise interference and improving the recognition
rate. [110] uses two relatively independent sub-convolutional networks with
different granularity for FVR and LeakyReLU as the activation function. The
experimental results show that the two sub-convolutional networks can extract
features more effectively and achieve an ACC of 95.1% on the small dataset.

S(t) = ln(1 + et) (3)

S(t) =

{
0 t < 0

ln(1 + et) − ln 2 t ≥ 0
(4)

Researchers have designed some neural networks to perform only one part
of feature extraction or classification. [111] removes the bottom structure from
a pre-trained CNN model and retains the front structure to extract features
from finger vein images. These images are matched using a template matching
strategy. [112] uses PACNet [113] instead of CNN for feature extraction and
ridge regression classifier [114] for classification. The PCANet filter is generated
based on the correlation between the original image and the grayscale image.
The best performance of these two methods on the public dataset reaches an
EER of 0.04% and an ACC of 100%, respectively. [115] uses PCA for feature
extraction and then uses a custom CNN model for classification, achieving a
recognition rate of 98.53% on FV-USM.

To solve the problem that traditional 2D finger vein images are easily
affected by finger position and posture changes during acquisition, [116] con-
structs 3D finger vein images and uses these images for detection. This study
uses three cameras to perform the imaging process. The 3D images usually
include more sufficient vein information than 2D. This research uses a 3D
reconstruction algorithm and a corresponding texture mapping algorithm to
create a 3D image based on three 2D finger vein images, and 3D finger vein
images are shown in Fig. 19. Finally, the lightweight CNN with depth-wise
separable convolution is used for feature extraction and matching. The exper-
imental results show that this method achieves EERs of 0.94%, 1.69%, and
2.40% on FV-USM, SDUMLA-HMT, and HKPU. As an extension of previ-
ous work, [117] uses a contour-based optimization model for 3D FVR and a
corresponding acceleration strategy to obtain 3D point clouds of finger vein
structures. A custom CNN structure, 3DFVSNet, is used to extract rotation-
ally invariant features, and the specific network structure is shown in Fig. 20.
Cosine similarity distance is used for verification. The Experimental results
show that 3DFVSNet has powerful robustness to axial rotation.

Some structures use Gabor filters [118] instead of convolutional layers.
Gabor filter is a wavelet with good transform properties of time and frequency
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Fig. 12. 3D finger vein reconstruction results.

Although our algorithm can successfully reconstruct a 3D
structure of the finger, some reconstruction and system errors
are inevitable. Because it is difficult to accurately obtain the
ground truth of a 3D finger vein structure, we utilize a textured
cylindrical object with a fixed size (as shown in Fig. 13(a))
as a pseudo finger to evaluate these errors. Similar to the 3D
reconstruction of a real finger, the textured cylindrical object
is first imaged through our system and then preprocessed and
rectified; finally, it is reconstructed to a 3D structure using our
proposed 3D reconstruction algorithm, as shown in Fig. 13.

In this paper, we adopt three values—the difference between
the fitted circle size and the real circle size (Dr ), the dif-
ference between the fitted center and true center (Dc), and
the difference between the height of the cylinder in the
reconstruction model and the real object (Dh)—as indicators
for the evaluation of the 3D reconstruction error. According to
our experiments, the three error values (deviation ratios) are
2.05 mm2(0.99%), 0.1359 mm (0.84%), and 0.5 mm (1%),
respectively. In general, these errors are relatively small and
appropriate for practical application. In addition, for texture
mapping, our proposed 3D reconstruction method can effec-
tively restore the texture in the 2D image to the surface of
the 3D model. This is demonstrated by the fact that a circle
on the real object remains a circle in the reconstructed 3D
model after 2D to 3D conversion is performed (as shown

in Fig. 12(c) and (d)), and the circle on the 3D model is almost
a straight line after unfolding, as shown in Fig. 12(e). The
above results show that our proposed 3D mapping strategy
effectively addresses the problem of vein deformation not
only on the v-axis but also on the u-axis of the image,
demonstrating its reasonability and validity.

For real applications, the 3D reconstruction error might be
greater for the following reasons: first, some errors in edge
detection appear to be inevitable; second, a real finger profile
is not a perfect ellipse; and third, the veins are not completely
attached to the epidermis. However, it must be emphasized
that the errors caused by the above factors do not have much
impact on the recognition system; in other words, these errors
are within an acceptable range.

C. Verification Experiment

To verify the fact that our proposed algorithms, including
the 3D reconstruction strategy and the feature extraction and
matching method, can achieve substantial improvements when
solving the issues of limited texture information and the
multipose problem in real-world situations, we conduct a suite
of experiments. The first experiment tests our constructed
network on different 2D finger vein databases and compares it
with other state-of-the-art methods to evaluate its effectiveness
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Fig. 19 The 3D finger vein image [116].
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Fig. 20 The structure of 3DFVSNet [117]. GCN represent graph convolutional neural
network.

domains. [119, 120] use Gabor convolutional layers instead of the normal con-
volutional layers in the CNN structure, and the whole model is end-to-end.
The method maintains the advantages of the Gabor filter in FVR and has
the excellent feature extraction ability of CNNs. They all achieve favorable
recognition results on public datasets. [121] proposes a novel Trilateral Filter-
ative Hermitian Feature Transformation based Deep Perceptive Fuzzy Neural
Network (TFHFT-DPFNN) model for improving the verification accuracy of
FVR. In this system, the Hermitian Hat wavelet is first used to decompose
and extract features from the noise-reduced finger image, and then the fea-
tures are transferred to the next hidden layer. These features are matched by
the Jaccard similarity index. Finally, the fuzzy membership function of the
output layer is applied to output the validation results. The TFHFT-DPFNN
achieves an ACC of 98% on SDUMLA-HMT.

The attention mechanism has been introduced into some custom CNN
structures. [122] designs a network structure consisting of a convolutional layer
and three Joint Attention (JA) models. The JA model can improve the model’s
discrimination of low-contrast finger vein images by exploiting the interdepen-
dence between the spatial locations of channels and feature maps. In addition,
this network introduces GeM pooling layers to enhance the feature. Numer-
ous experiments demonstrate the validity of each network component, and the
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network has an EER of only 0.34% on FV-USM. [123] proposes an improved
FVR model based on the residual attention mechanism. The main part of
this network is the residual attention blocks, and this network is divided into
the trunk branch and the soft mask branch. The trunk branch extracts finger
vein features from feature maps that are generated by the previous layers, and
the soft mask branch learns global vein information using the hourglass net-
work [124]. Benefiting the advantages of this structure, this network can learn
more abundant finger vein information than other simple networks without
branching structures. This method achieves the ACCs of 98.58% and 97.54%
on FV-USM and MMCBNU-6000. [125] designs a network based on bilinear
pooling to extract the second-order features of finger veins, and the complex-
ity of this network is reduced by replacing conventional convolution with DSC.
Meanwhile, this method designs a dimensional interactive attention mecha-
nism to enhance the correlation between channels and space, further increasing
the model’s recognition accuracy. This method reaches an ACC of 100% on
FV-USM.

In [126], The vein areas are extracted from original finger vein images using
the Sobel operator and polygon ROI, and then the dark vein lines are generated
using double Contrast Limited Adaptive Histogram Equalization (CLAHE).
Finally, these processed images are fed into a 20-layer CNN for feature extrac-
tion and verification. The application of CLAHE enhances the finger vein image
quality. The experimental results show that this method achieves an ACC of
94.88% on SDUMLA-HMT.

[127] proposes a new FVR method that uses two different fingers instead
of a single finger to perform verification, and the method is called Re-enforced
DL (RDL). The CNN model of RDL stores the weights of both the index
and middle finger veins. In the RDL, the index finger is used for the first
verification, and the middle finger for enhanced verification. The RDL method
effectively utilizes the venous features of both fingers and achieves an ACC of
91.19% on HKPU. [128] performs finger vein verification with the ensemble
DL system. In this system, several CNNs are first trained as weak classifiers,
and then these classifiers are ensembled to obtain an integrated classifier for
recognition. The input of the ensemble DL system is the feature maps from
other CNNs, Gabor filters, and LBP. The ensemble DL system obtains ACCs
of 92.11% and 94.17% on HKPU and FV-USM.

5.1.7 Verification based on other networks

LeNet-5 is one of the most representative structures of early CNNs. It defined
the main structure of the CNN, convolutional layer, pooling layer, and fully
connected layer. [129] designs a MATLAB-based FVR system. This system
uses a modified LeNet-5 as the backbone. In this system, the image pre-
processing and other steps are performed on different platforms, and these two
parts are connected using MATLAB’s MEX files. The experimental results
show that this FVR system recognizes ten subjects within less than ten sec-
onds and achieves an ACC of 96%. [130] use the network proposed by [131]
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for FVR. This network is more lightweight than LeNet-5, with only two
convolutional layers and two fully connected layers. To reduce the number
of parameters, [130] cuts off the connections between some neurons in the
fully connected layers. In addition, this network uses the stochastic diago-
nal Levenburg-Marquardt algorithm to ensure fast convergence. The network
achieves recognition rates of 100% and 99.38% on 50 and 81 subjects, respec-
tively. ZFNet is also one of the classical CNNs. In [132], the pre-processed
images were fed to ZFNet for classification. The first convolutional layer of
ZFNet uses small convolutional kernels and strides, which can retain more fea-
tures of the original information. This network achieves an ACC of 86% on
one section of SDUMLA-HMT.

[133] compares the performance of three well-known deep CNN structures,
AlexNet, SqNet, and GoogLeNet, on FVR tasks. These networks have been
pre-trained on ImageNet. The image noises are removed using a wiener filter,
and these networks are trained with these enhanced images. The experiment
results show that GoogLeNet outperforms other networks in terms of classifi-
cation. [134] introduces the DSC into a pre-trained Xecption model, replaying
the traditional convolutional layers with DSC. The DSC enables Xception to
learn more robust features from images and achieves superior classification
performance than normal convolutional layers. This method achieves an ACC
of 99% and an F1-score of 98% on the SDUMLA-HMT dataset, and an ACC of
90% and an F1-score of 88% on the THU-FVFDT2. [135] uses discrete super-
vised hashing sequences and triplet loss function to train the network. Discrete
supervised hashing can reduce the size of stored feature templates, and this
method can improve the matching speed. This paper compares a lightweight
CNN with the improved VGG-16, and the experimental results show that
lightweight CNN has a superior performance.

DenseNet [136] has a more dense connection mechanism than ResNet. Each
layer of DenseNet accepts the output of all its preceding layers as its additional
input. This design greatly suppresses the gradient vanishing. [137, 138] use
DenseNet-based network architecture to perform FVR tasks. In [137], three
images are simultaneously fed into a pre-trained DenseNet-161. The input
image, the registered image, and their composite image. This method solves the
problem that the normal different image is susceptible to noise, and the com-
posite input of three images makes the recognition performance more accurate.
The method achieves EERs of 0.33% and 2.35% on HKPU and SDUMLA-
HMT, respectively. [138] is the first study to use both venous texture and
finger shape features for FVR. The texture image and the segmented shape
image are fed into the DenseNet-161 and then output their respective match-
ing scores. Finally, the verification result is presented by score-level fusion. The
method effectively utilizes multiple features of finger vein images and enhances
the noise resistance of the model.

ShuffleNet [139, 140] maintains a balance between speed and accuracy by
introducing pointwise group convolution and channel shuffle. [141] uses Shuf-
fleNet V2 as the backbone and removes the first pooling layer to generate
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larger feature maps, which helps to retain fine-grained features. In addition,
this model uses Triplet and Softmax-based fusion loss functions instead of the
original Softmax loss function. The network achieves an EER of 0.05% on the
public dataset.

[57] transfers the knowledge of a pre-trained CNN model to a more
lightweight Siamese CNN by knowledge distillation. This Siamese CNN uses a
new modified contrastive loss function to improve the discriminative ability for
features. The experimental results show that the EERs of this Siamese CNN on
MMCBNU-6000, FV-USM, and SDUMLA-HMT are 0.08%, 0.11%, and 0.75%.
[142] proposes an FVR system based on a two-branch network incorporating
joint Bayesian loss. In this system, finger shape images and ROI vein images
are fed into the two-branch network to extract more effective features from
finger vein images. Joint Bayesian loss is used to train the network. The exper-
imental results show that the system obtains the EERs of 0.17% and 0.94%
on MMCBNU-6000 and SDUMLA-HMT. In [143], two finger vein images from
the same finger are fed into two CNNs that have parallel structures, and the
two outputs are combined using the CLAHE method and the Gabor filtering
method. This method utilizes the vein information from both images instead
of a single image and achieves an ACC of 99.56% on THU-FVFDT2.

Different from the traditional CNNs, some novel network structures are
used in FVR. [144] uses a capsule network for FVR. Capsule networks extract
features of finger veins in a more reasonable way than CNNs by their trans-
lational and rotational invariance. In addition, the special structure of GNN
determines that it can effectively learn the graph structure features of fin-
ger veins. [145] applies GNN to perform the FVR task for the first time.
The method without pre-processing steps and data augmentation strategy.
In this study, the images are first fed into a small CNN to extract feature
vectors, and then an edge features learning network is used to model the rela-
tionships between all node pairs. Finally, the results are fed into a GNN to
perform the classification. The experimental results show that GNN achieves
high performance on FVR tasks with fewer parameters and faster model
convergence.

5.2 Image enhancement

The quality of finger vein images captured by different capture devices varies
due to differences in acquisition environments. Although deep neural networks
are capable of conducting verification tasks end-to-end using raw finger vein
images, the quality of these images can significantly impact verification per-
formance. More critically, finger vein images may suffer from blurring and
corruption, resulting in the loss of recognizable texture information. Image
enhancement techniques offer an effective means to improve image quality and
restore lost information. The application of image enhancement to finger vein
images accentuates vine line textures and effectively enhances recognition by
deep neural networks. In this section, we primarily adhere to the two most
widely utilized structures for image enhancement tasks in FVR. GAN and
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CAE are the most commonly used because their structures afford them an
advantage in the field of image generation.

5.2.1 Image enhancement based on GAN

Finger vein images may be blurred due to low temperature, vein stretching, and
illumination change. These factors seriously affect the quality of the images.
Some GAN-based methods can repair these defects of impaired images to make
these images greatly recognized by ANN. [146] proposes a GAN based on
Neighbors-based Binary Patterns (NBP) to recover the finger vein images.
This model uses NBP texture loss between the input image and the generated
image to train the generator network, and the loss function is able to enhance
the deblurring ability of the network. Meanwhile, residual connections are
added to the generator network to prevent overfitting. The Peak Signal-to-
Noise Ratio (PSNR) of this GAN based on NBP reaches 30.42. dB. [147]
proposes a novel finger vein image restoration method, and this method also
uses the NBP texture loss function. Meanwhile, the method uses Possion fusion
in the input process to reconstruct the finger vein images to make the image
boundary connection of the image more natural. The discriminator network
consists of two Wasserstein GAN with Gradient Penalty modules to ensure
consistency between the global and local information of the restored image.
The experimental results show that adding texture loss can better recover
the veins. [148] and [149] are focused on the optical blurring and the motion
blurring of finger vein images, respectively. [148] uses a modified conditional
GAN to restore optically blurred red finger vein images. Previous conditional
GANs use random noise in the form of dropout to ensure the randomness of
noise. However, this method may change the information of the restored finger
vein image. This study proposes a modified conditional GAN without dropout
because of the need for deterministic output. A comparison with the original
conditional GAN shows that the approach performs better image restoration.
As an extension of the previous work, [149] reduces the number of residual
modules in the generator network to speed up the model inference and reduce
the network parameters.

To overcome the obstacle of illumination, [150] designs a GAN for The
Illumination Normalization of Finger Vein Images (INF-GAN). The structure
of INF-GAN is designed based on Pix2Pix-HD [151]. The residual model is
used as the generator and PatchGAN [152] as the discriminator. The residual
image generation block can highlight the vein textures distorted by serv-
ing uneven illumination. [153] proposes a finger vein images denoise method
based on GAN, which is called Custom Sample Texture Conditional GAN
(CS-TCGAN). This approach designs a joint loss function that combines
adversarial loss, content loss, and texture loss to obtain more abundant vein
information from the image than Softmax loss. Meanwhile, the CS-TCGAN
describes the rough finger vein structures by the de-convolutional layers oper-
ation and then fills in the details to generate the image. To make the training
samples simulate the real noise distribution, this study also designs a dataset
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with a mixture of Gaussian, Poisson, and speckle noise. The CS-TCGAN shows
a great denoising performance on a private dataset.

5.2.2 Image enhancement based on CAE

[154, 155] use the CAE network for finger vein image enhancement. [154] pro-
poses a finger vein image with spots and stains repair solution. The scheme
first removes the effect of illumination changes on the image by the Gabor filter
and Weber’s low descriptor. Then, the images are fed into an encoder network
structured as AlexNet to mark the smeared pixels and learn shallow features.
Finally, the marked images are fed into the decoder network to recover the
image. The workflow of [155] is similar to like [154], which uses the adap-
tive thresholding approach to detect contaminated areas in finger vein images
before feeding them into CAE for image recovery. These two CAE-based image
enhancement methods have great performance on private datasets.

5.2.3 Image enhancement based on other networks

[156] pre-trains a lightweight VGG-16, and the pre-processed images are fed
into this network for image enhancement. This modified VGG-16 structure
includes 13 convolutional layers and five max-pooling layers. Meanwhile, The
VGG-16 removes the fully connected layer. The ACC of more than 99% is
achieved using enhanced images by this network for recognition. [157, 158]
uses custom CNN structures for finger vein image enhancement. In [157], the
captured images are directly fed into the CNN for image enhancement. This
network contains three convolutional layers and two deconvolutional layers.
The convolutional layers are used to learn the distribution of noise features and
generate feature maps, and the deconvolutional layers use the feature maps
to reconstruct noise-free finger vein images. The model achieves a PSNR of
29.638 dB on HKPU. [158] builds an end-to-end Finger Vein Image Scattering
Removal Network (FVSR-Net) by combining an optical scattering model and a
multi-scale CNN named E-Net. The specific workflow of this method is shown
in Fig. 21, and the theory of the optical scattering model is shown in Eq.(5).
I and I0 represent the original and restored images. The E(x) and a represent
the output of E-Net and bias. The FVSR-Net achieves the PSNR of 13.5929
dB on SDUMLA-HMT.
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Fig. 21 The E-Net framework of the proposed scattering removal model [158].
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I0(x) = E(x)I(x) − E(x) + a (5)

In addition to these CNN-based structures mentioned above, a novel neu-
ral network is used to enhance the finger vein images. [159] uses a modified
Pulse Coupled Neural Network (PCNN) for finger vein image enhancement.
PCNN has the characteristics of synchronous pulse release and global coupling
to extract sufficient information from complex backgrounds. This study pro-
poses a parameters tuning scheme based on the original PCNN to adjust the
parameters without any empirical correlation automatically. The experimen-
tal results show that the PCNN-enhanced images can produce a rewarding
recognition performance.

5.3 Segmentation

Finger vein images inherently encompass significant redundant background
information alongside the vein line texture crucial for identification. This
redundancy arises due to the illumination of infrared light, which accentuates
the hemoglobin-rich vein vessels. However, such background information holds
minimal relevance for deep neural network-based verification processes. Image
segmentation techniques are therefore employed to isolate specific objects’ pix-
els from images containing multiple objects. By applying image segmentation
to finger vein images, clear vein features can be separated from extraneous
background data, enabling the deep neural network to extract more discernible
features. In the realm of FVR, the prevalent utilization of the U-Net, a ver-
satile network architecture renowned for its efficacy in segmentation tasks,
underscores its efficacy in segmenting finger vein images.

5.3.1 Segmentation based on U-Net

[160–162] compare the segmentation performance of three full CNNs: U-Net,
RefineNet, and SegNet. These studies use the manual labeling method and
automatic labeling method to generate the ground truth images from the orig-
inal datasets, and these ground truth images are used to train these networks.
Finally, the segmentation performance is evaluated by calculating the cor-
relation between the input images and the ground truth images. Numerous
experiments illustrate that labeled images generated by automatic labeling
methods can improve the segmentation accuracy of the network, and U-Net
is more sensitive to the input image quality, while RefineNet and SegNet are
more stable.

The existing large finger vein segmentation networks are not suitable for
implementation in mobile terminals since they are too deep. To solve this prob-
lem, [163] proposes a lightweight network for finger vein segmentation. First,
the DSC is introduced to the original U-Net to reduce the model’s param-
eters, and the Ghost model [164] is introduced to the network to compress
the network further. In addition, channel shuffling is introduced to the model
to shuffle and reorganize all feature channels uniformly. Finally, this network



Springer Nature 2021 LATEX template

36 Article Title

obtains better segmentation performance and shorter segmentation time by
using filter pruning via geometric median. Experimental results demonstrate
that the network achieves great segmentation performance.

[165] proposes a LadderNet-based segmentation method for finger vein
images. The LadderNet is an improved network based on the conventional U-
Net, which can fuse multi-path transmission information to obtain complex
vein features. In this study, the venous features are extracted by the local
maximum curvature detection method. These features are used to train Lad-
derNet. The experimental results show that the LadderNet obtains an AUC
of 91.56% and 92.91% on SDUMLA-HMT and MMCBNU-6000.

5.3.2 Segmentation based on other networks

[166] evaluates three State-Of-The Art (SOTA) semantic segmentation net-
works on finger vein image segmentation task, and they are Mask RCNN [167],
CCNet [168], and HRNet [169]. In this research, the pre-processing steps only
contain the resizing and normalization of the input images. The experimental
results show that the performance of these networks is unstable when tested
on different public datasets. [170] designs a CNN-based multi-scale feature
representation method for finger vein image segmentation, and the specific
flow is shown in Fig. 22. The Global Guiding Feature (GGF) model is used
to extract multi-scale feature information and enables the vein features to be
better separated from the background. The GGF model comprises four Local
Similarity Pyramid (LSP) models based on different scales. In addition, the
network uses the Pyramid Fusion Module (PFM) to enhance the multi-scale
features, and this approach avoids the contextual information loss between
different sub-regions. In the feature aggregation phase, this network uses the
Feature Aggregation Module with Channel Attention (FAMCA) to retain the
important feature mappings and ignore the irrelevant ones. The network can
automatically exploit multi-scale features in finger vein images to improve the
segmentation performance by fusing GGF, PFM, and FAMCA models.

GGF PFM

x2

x2

FAMCAx2

x8

x2 FAMCA

Input OutputConv Conv Conv Conv Conv

Fig. 22 The framework of the proposed multi-scale feature representation method [170].

5.4 Presentation attack detection

In the field of biometric recognition, live identification is only legal in order
to ensure the security of the identification system. It is illegal to use printed
images. For instance, a person takes a printed finger vein image to pass verifi-
cation instead of their own finger. This phenomenon of using non-living images
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in an attempt to spoof a recognition system is called a presentation attack.
In order to guarantee the security of the recognition system, it is necessary to
develop a technique capable of identifying whether the image entered by the
user is a real live image or a printed image.

[171, 172] use CNN structure based on AlexNet for finger vein PAD. [171]
uses a pre-trained CNN model to extract features from the pre-processed fin-
ger vein images and uses PAC for feature extraction. Finally, the SVM is used
to verify the authenticity of the images. This PAD method achieves zero error
on IDIAP. [172] extends the original AlexNet with seven layers to enrich the
robustness of the model. Meanwhile, the study uses patches corresponding to
real and fake images to fine-tune the network to suppress overfitting. This
method performs well for inkjet printed artifacts with 3.48% APCER and
0% BPCER. [173] proposes a DSC with residual structure and Linear SVM
for finger vein PAD tasks. This is the first time DSC has been used for fea-
ture extraction in the finger vein PAD tasks. This feature extraction method
allows more comprehensive processing of real-time scenes and makes the net-
work more lightweight. In addition, residual modules are added to the DSC
to prevent the gradient vanishing. Linear SVM is used for classification. The
experimental results show that the error rate of this model on both IDIAP
and SCUT is 0.00%. [174, 175] perform PAD using a custom CNN structure.
[174] designs a lightweight CNN that consists of f two convolutional layers
and pooling layers followed by two fully-connected layers. This network is not
pre-trained in any way, but the training samples of the network are enriched
by data augmentation directly on the original images. The method achieves
an ACC of 100% on both public datasets. [175] uses a multi-task learning
approach to integrate the recognition task and the PAD task into a united
CNN model and designs an FVR system. In this system, the image with the
most obvious vein information is selected by applying a multi-intensity illu-
mination strategy, and if it passes the anti-spoofing detection, the features of
that image are used for subsequent registration and recognition. The experi-
ments illustrate the excellent performance of the system even on challenging
databases with images depicting axial rotation.

5.5 Template protection

For a competent biometric system, beyond ensuring user security, safeguarding
the privacy of the database is equally imperative. In the case of FVR, stor-
ing captured finger vein images directly in the recognition system’s database
poses a significant risk. Any instance of information leakage could compro-
mise the safety of all users’ finger vein data. To fortify the privacy security of
the database, it is imperative for the recognition system to employ encryption
techniques on stored biological information. This measure, known as template
protection, effectively bolsters the privacy security of the recognition system.
Even in the event of information leakage, the encrypted biological data remains
incomprehensible, thus preventing decryption.
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[176] presents a template generation framework based on random projec-
tion and DBN, which is termed FVR-DLRP. In the FVR-DLRP, the features
extracted from the original finger are transformed from the high-dimensional
space to the low-dimensional space by random projection while generating a
protected template by combining randomly generated keys. These templates
are trained on the DBN, and the complexity of the DBN structure ensures
the safety of these templates. The experimental results show that the FVR-
DLRP achieves a recognition rate of 96.9% and a False Acceptance Rate (FAR)
of 1.5% on FV-NET64. [177, 178] use CAE structure to learn deep features
from the feature map generated by conventional FVR methods. Biohash gen-
erates a protection template for these features. This method performs better
than the original hash protection template in the stolen scenario. [179] encodes
the finger vein images into one-dimensional vectors, then encrypts the vec-
tors and re-encodes the vectors into images using the Rivest–Shamir–Adleman
(RSP) algorithm, and finally feeds it into a modified ResNet containing the
Squeeze-and-Excitation block for feature extraction and recognition. [180] pro-
poses a biometric protection algorithm based on the Binary Decision Diagram
(BDD) [181] and a Multi-Layer ELM (ML-ELM) [182]. This BDD-based secure
template generation algorithm extracts features from the pre-processed finger
vein images using Gabor filters with LDA. These features are transformed into
binary-based features, and BDD generates the protected templates of these
features. Finally, these templates are fed into the ML-ELM for training. ML-
ELM is a multi-layer ANN structure with a faster learning speed than other
deep CNNs. The BDD-based protected template generation method can be
applied to any binary-valued feature vector, and this method requires only a
little storage space. The experimental results show that the method achieves
CIRs of 93.09%, 98.70%, and 98.61% on SDUMLA-HMT, MMCBNU-6000,
and UTFVP.

5.6 Multimodal biometric recognition

Normal biometric recognition systems typically rely on a single biometric infor-
mation to identify the user. However, in pursuit of heightened accuracy, some
recognition systems incorporate multiple biometric information simultaneously
for verification. This approach, known as multimodal biometric recognition,
significantly diminishes error rates inherent in biometric recognition systems by
amalgamating diverse biometric data sources. A common multimodal recogni-
tion technique for FVR involves the integration of finger vein images and finger
shape images. This choice is predicated on the fact that both types of biomet-
ric information originate from the finger and can be conveniently captured in
a single instance. Furthermore, we discuss multimodal biometric recognition
methodologies that encompass more than two types of biometric information
about finger vein.
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5.6.1 The fusion of two biometric information

[183–186] use finger vein and another biometric information for recognition.
[183] uses finger shape and finger vein for recognition, where the finger shape
image is a two-dimensional spectrogram image that expresses the change in the
frequency component of the finger thickness based on the horizontal position
of the finger. The finger shape image and the finger vein image are fed into a
more lightweight ResNet with only four residual blocks to output the matching
scores separately. Score level fusion is used for multimodal recognition of finger
shape and finger vein. The experimental results show this multimodal recogni-
tion framework obtains EERs of 3.509% and 1.706% on SDUMLA-HMT and
HKPU. [186] performs score level fusion recognition of face and finger vein.
The CNN structures used here are based on AlexNet, and the CNN for faces
has two more convolutional layers and one more pooling layer than that for
finger veins. This method achieves an ACC of 99.78%.

[184] proposes two methods for multimodal recognition regarding finger
knuckle and finger vein. The respective specific processes of the two meth-
ods are shown in Fig. 23. This study compares the recognition performance
of three pre-trained CNN structures for finger knuckle print image and fin-
ger vein image: AlexNet, VGG-16, and ResNet-50. Among these networks,
ResNet-50 achieves the best experimental results, with the ACC of 99.89% in
the score level fusion method and 98.84% in the feature level fusion method.
[185] presents a multimodal biometric recognition system for Electrocardiogram
(ECG) and finger veins. A custom CNN containing nine convolutional layers
is used to extract deep features, and the K-Nearest Neighbors is used for clas-
sification. In addition, this system uses multi-canonical correlation analysis to
express deep features in low-dimensional space and accelerate the validation.
The experimental results show this approach achieves EERs of 1.40% on the
score level fusion and 0.12% on the feature level fusion.
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fusion method. (b) score level fusion method.
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5.6.2 The fusion of various biometric information

[187, 188] performs multimodal biometric recognition using multiple features,
including finger veins. [187] aggregates fingerprints, finger veins, and faces for
recognition using the score level fusion method. The CNN structure used for
feature extraction and the three network structures used to detect the three
biometric information are the same. The method related to finger vein uses
random forest [189] as the classifier, and other biometric information uses
Softmax. This multimodal recognition method achieves an ACC of 99.49% on
SDUMLA-HMT. [188] designs a score level fusion recognition approach with
iris, face, and finger vein, and the experiments of this study are also per-
formed on SDUMLA-HMT. It uses pre-trained VGG-16 as the CNN structure
to perform the classification, and this method achieves an ACC of 99.39%.

5.7 Other tasks of FVR

Finger vein image quality assessment is an essential part of FVR, and finger
vein images of unsatisfactory quality may lead to verification failure. [190–193]
performs the quality assessment of finger vein images based on deep neu-
ral networks. [190, 191] extracts binary finger vein patterns from grayscale
images, feeds them into a deep CNN for training, and outputs the features
using the last fully connected layer in this deep CNN. This deep feature is
fed into the SVM to generate image quality scores. Experiments on two pub-
lic datasets show that the CNN + SVM scheme can accurately discriminate
between high and low-quality finger vein images. [192] uses a lightweight CNN
with only two convolutional layers and two fully connected layers for image
quality assessment. In this approach, the segmented image sub-blocks are fed
into the network instead of the entire image, and the network generates the
respective quality scores. Finally, the quality score of the whole image is the
average of all sub-block scores. [193] uses the histogram of competitive Gabor
responses [194] to label the training samples. Meanwhile, to compensate for
the insufficient number of low-quality images in the training data, it uses the
SMOTH method to perform the data augmentation. A custom CNN model
trained by these samples achieves an ACC of 98.3% on MMCBNU-6000.

[195, 196] focus on the feature extraction step in FVR. [195] proposes
a finger vein feature extraction model based on full CNN and Conditional
Random Field (CRF). DSC is added to fully CNN in this model to capture
complex vein features by adaptively adjusting the received field. In addition,
residual recurrent convolution is used to mine the deep features further. The
CRF-RNN module is embedded in the model to output the feature maps.
[196] proposes a new loss function. It can dynamically adjust margins of dif-
ferent types to obtain more representative features. Experiments prove that
the features extracted by this method have stronger geometric interpretations.
[197, 198] focus on ROI extraction of finger vein images. [197] uses VGG-16 for
ROI extraction of finger vein images. This research compares the feature maps
outputted by each convolutional layer, and the experiment results show that
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the feature map output by the third convolutional layer converges the fastest
and has the best performance. [198] uses a capsule network to perform the
ROI extraction task of FVR. The dynamic routing algorithm between capsules
replaces the pooling layer in CNN, thus avoiding the loss of location informa-
tion due to pooling operations. This method not only improves the efficiency of
ROI extraction but also simplifies the network model compared to deep CNN.

[199] proposes a GAN-based image generation method to compensate for
the lack of finger vein images in public datasets by generating finger vein
images. This network generates new finger vein images from the segmented
finger vein image by convolution and deconvolution operations, adding residual
blocks to suppress overfitting. The images generated by this method are clearer
than the original images in the datasets. [200] uses a modified Pix2Pix model
to generate grayscale finger vein images from binary templates. The generator
network uses a U-Net structure to generate the vein images and adds residual
blocks between the up-sampled and down-sampled convolution layers. This
method can be used for data reconstruction across datasets rather than just
intra-class data augmentation.

[201, 202] explore the similarities between finger veins from the same
people. To investigate the vein similarity between the left and right hand
symmetrical fingers, a pair of symmetrical fingers from the same subject is con-
sidered a class in [201]. DenseNet-201 is used to train the manually extracted
features. This paper experimentally considers that although there is some sim-
ilarity between symmetrical fingers of the same people, this similarity is not
sufficient for applicants on FVR. As an extension work, [202] introduces the
triple loss into the CNN model, enabling vein similarities between symmetric
fingers to be successfully detected.

5.8 Summary

Compared with classical neural networks, deep neural networks perform more
tasks in the field of FVR. DL is now the mainstream technology used in the
FVR. To illustrate the application of deep neural networks on FVR, we provide
a summary table of related papers in Tab. 5.

Verification tasks are the most frequent tasks involved in FVR. Typical
structures, AlexNet, VGGNet, ResNet, etc. have achieved excellent results
in the verification task. In addition, many custom CNN structures have also
obtained satisfactory performance. The construction of 3D finger vein images
provides a desirable prescription for finger posture change problems. GANs
are the mainstream network in image enhancement tasks on FVR due to their
powerful image generation ability. The CAEs also performed image enhance-
ment by the convolutional layers in the encoder and de-convolutional layers in
the decoder. Like many other computer vision tasks, U-Net is the most com-
monly used network for performing segmentation tasks in FVR. However, the
number of papers related to segmentation tasks is scarce, and this research
direction needs further exploration. The main task of the PAD on FVR is to
identify the printed finger vein images and the real collected finger vein images.
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Many research works have achieved complete success on this task. The study
of the template protection tasks helps prevent data leakage from the FVR
system and fully safeguards users’ privacy.

6 Challenges and potential directions

Although the finger vein is stable and challenging in forgery due to the finger
vein being deep inside the skin, the recognition process of FVR still faces some
challenges. In this section, we summarize the challenges related to FVR and
analyze existing research on these challenges. Meanwhile, the ANN technology
represented by DL has been popular in recent years. In this section, we present
the potential development directions of FVR based on cutting-edge knowledge
in the field of ANN and the properties of finger veins as biological tissue.

6.1 Challenges of FVR

6.1.1 Finger posture changes

During the finger vein image acquisition, the user may place the finger on
the finger vein collector in different positions, which may result in misaligned
images. Meanwhile, the skin’s thickness on the finger’s surface is hardly per-
fectly uniform. Some light angular rotations of the finger during the capture
process can make the image quality change, and severe rotation of the finger
resulting in postural changes can lead to significant differences in the captured
vein structure from the registered images. [144, 198] uses capsule networks for
processing finger vein images to mitigate the effects of finger pose changes on
FVR by taking advantage of the capsule network’s ability to store information
on feature location changes. However, the training time of the capsule net-
work is too long, and too much redundant information will lead to the capsule
shedding problem [215]. Moreover, the capsule network is still in development
and not yet mature. [116, 117] construct 3D images using multiple 2D finger
vein images, and then use the constructed 3D finger vein images for recogni-
tion instead of traditional 2D images. The 3D finger vein images are shown in
Fig. 19. The 3D finger vein image can fully render the entire finger’s vein struc-
ture instead of the localized structure captured on one side in the 2D image.
The vein structure in the final 3D finger vein image is consistent regardless
of finger posture variations. However, the 3D modeling process is computa-
tionally complex compared to the traditional FVR approach using 2D images.
Meanwhile, the multiple 2D finger vein images used to construct the 3D model
need to be captured from different angles using multiple NIR cameras. This
method of capturing images is even more costly. There is also a lack of large
public datasets of 3D finger veins for other network models to be trained. In
conclusion, more cost-effective and convenient methods need to be developed
to solve the challenge of image misalignment caused by finger posture changes
in FVR.
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6.1.2 Illumination blur

Illumination conditions can affect the finger vein image quality during the
image acquisition phase [159]. Affected by uneven illumination conditions, the
brightness of the central part of the finger vein image is too high, and both
sides are too low, resulting in the loss of some of the vein pattern informa-
tion. Meanwhile, the obtained finger vein images are frequently damaged due
to light attenuation in biological tissue [154]. To address the degradation phe-
nomenon of image quality caused by uneven illumination, most research works
employ cumbersome image pre-processing methods to improve image contrast.
However, the restoration effect of this method is hardly significant when the
image degradation is severe. To enhance the quality of finger vein images dam-
aged by uneven illumination, [150] restores the vein information damaged by
light with the help of residual blocks. However, the robustness of this model is
insufficient, and the recovery of uneven illumination is unsatisfactory for gen-
eral scenes. To address this challenge, on the software side, the network model
needs to improve robustness without increasing complexity as much as possi-
ble, and it also needs to optimize the image enhancement methods further. In
terms of hardware, creating an image acquisition environment that is as free
from light as possible is necessary.

6.1.3 Dynamic recognition

In a typical biometric recognition system, the user usually need some time to
pick up biometric information from the body during the image acquisition pro-
cess. It is undoubtedly more satisfying if the feature acquisition process can be
completed without dwell. However, image capture while the user is in motion
will cause image blurring, and these blurred images can affect the recogni-
tion performance of ANNs. [149] uses a DeblurGAN based on an improved
loss function to focus the motion blurred finger vein image restoration. The
approach performs image enhancement, but the matching process still has
failed cases because of the difficulty in ROI extraction of motion blurred finger
vein images. To more thoroughly address the challenge of dynamic verification
for FVR, [102] uses an array of multiple cameras for image capture, and these
cameras can collect multiple finger vein videos at different exposures during
user movement. The LSTM and CNN are used to process the captured images.
However, this system is designed with a non-end-to-end network structure, and
the processing is complex. In addition, as with several other solutions to the
challenge, the image acquisition method for this method is costly. FVR still
needs further exploration in dynamic recognition.

6.1.4 Other challenges

FVR faces several challenges that haphazardly interfere with its performance
and application capabilities of FVR. Temperature changes may impact blood
flow in the veins, affecting the contrast of the vein picture. Furthermore, various
thicknesses of finger bones and muscles will produce irregular shading, which
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can detect ambiguous or incomplete vessel structures. Besides, although the
finger vein information is claimed to be only detected on aliveness, many recog-
nition systems can be cheated by forged vein patterns printed on distinctive
paper. The excellent performance, privacy, and stability of FVR are already
widely appreciated, and if researchers can overcome these above challenges,
the FVR technology will be more powerful.

6.2 Potential development direction of FVR

6.2.1 Knowledge distillation

In addition to training network models, how to deploy the models on terminals
with limited hardware conditions is a critical issue for FVR. In general, the
trained and deployed models are usually the same in FVR tasks, and networks
with excellent recognition performance in FVR tasks usually have complex
structures. These complex network models are difficult to deploy on mobile
terminals due to their slow inference speed and high computational resource
requirements. To enable the network models with excellent performance to
be deployed on mobile terminals to enhance the application of capabilities of
FVR, the model compression methods are used. Traditional compression meth-
ods mainly focus on designing lightweight network structures. The lightweight
networks can achieve comparable performance to complex networks on easy
tasks through a refined design, but their structure is shallow, resulting in lim-
ited feature extraction capability that fails to solve the tasks that have large
data volumes [216]. Knowledge distillation [217] can enable lightweight net-
work models to have better recognition performance comparable to that of
deep networks, thus improving the application capability of FVR.

Knowledge distillation is a model compression algorithm and employs a
training method based on a “teacher-student” network. The schematic diagram
is shown in Fig. 24. This approach uses the knowledge of larger networks with
better performance to supervise the training process of the lightweight network
to allow the lightweight network to achieve better performance. This large
network is called the “teacher” model, and the lightweight model is called the
“student” model. In the case of using knowledge distillation, the teacher model
only serves as a guide, and it is the student model that is really deployed on
terminals.

Knowledge distillation can be divided into response-based distillation and
feature-based distillation according to the different distillation methods. In the
classification task, the network uses a Softmax function at the final layer to
obtain the probabilities of the positive and the negative samples. The response-
based distillation uses the output of Softmax from the teacher model to assist
the training of the student model, allowing the student model to learn the
generalization ability of the teacher model by directly combining the labels of
samples [218]. In this strategy, the output of Softmax is called soft target, and
the true labels of samples are called hard target. Due to all data in the same
distribution having similarities [219], and negative samples with higher scores
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Teacher model Student model

Knowledge
Dis�ll Transfer

Knowledge dis�lla�on

Fig. 24 The knowledge distillation based on “teacher-student” network [217].

have more similarities to positive samples, in addition to positive samples, a
large number of negative samples contain abundant information inferred from
the teacher model. However, using the output of Softmax directly as a soft
target makes its contribution to the loss function minor. As shown in Eq.(6),
the response-based distillation amplifies the effect of information carried by
negative samples on model training by setting the parameter T in the Softmax
function. pTi represents the value of the Softmax output of the teacher model
on class i at the temperature equal to T , and qTi represents the student model.
N represents the total number of samples.

pTi = exp(vi/T )∑N
k exp(vk/T )

qTi = exp(zi/T )∑N
k exp(zk/T )

(6)

In addition to the output of the final layer in the network, the feature maps
output from the middle layers of the network in the teacher model can also
be the knowledge for supervising the training of the student model [220]. The
feature-based distillation is an extension of response-based distillation, and
the difference between the two methods is shown in Fig. 25. The feature-based
knowledge distillation leans not only on the output results in the teacher model
but also on the features extracted from hidden layers in the teacher model.

According to the literature we surveyed, most of the model compression
methods involved in the FVR are to design lightweight networks [68, 103–106,
221, 222], and knowledge distillation has never been widely used. Therefore,
applying knowledge distillation in FVR is yet to be explored. The development
of this technology will take FVR to a new level.

6.2.2 Transformer

Transformer is a landmark model proposed by Google in 2017 [223], which has
created a revolution in the field of Nature Language Process (NLP). Trans-
former uses an Encoder-Decoder structure based on self-attention, and the
specific structure is shown in Fig. 26. In NLP tasks, RNNs process data in a
serial manner. In contrast to RNNs, The innovation of Transformer processes
data in a parallel manner since the attention mechanism allows the model to
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Fig. 25 The response-based distillation and the feature-based distillation. (a) The
response-based distillation. (b) The feature-based distillation.

consider the interrelationship between any two words regardless of their posi-
tion in the text sequence. Relying on this advantage, Transformer has achieved
great success in NLP tasks [224, 225]. At the same time, several studies have
pioneered the introduction of Transformer into computer vision with excellent
performance, including image classification [226], object detection [227], image
segmentation tasks [228], etc. The Vision Transformer (VIT) and the SEg-
mentation TRansformer (SETR) are two representative Transformer-based
models in the CV field, based on which Transformer can make a breakthrough
in the verification task and segmentation task of FVR.

6.2.3 The similarity of finger veins

One of the conveniences of FVR is that even if one finger is in an accident,
the other fingers can still be used for identification. In addition, it is undoubt-
edly excellent to lock the identity of a suspect in forensic identification with
the veins of any one finger. Nevertheless, registering ten fingers simultane-
ously in an identification system is a hassle for users. Therefore, it is necessary
to explore whether the finger veins of the ten fingers of the same individ-
ual are similar in future FVR research work. If there are some connections
between different finger veins of the same person and they can be identified
by FVR systems, it will take the convenience of FVR systems to a new level.
Although [201, 202] focus on this problem, they still have some limitations.
[201] considers the connection between the veins of different fingers of the
same person is too weak to perform the recognition. [202] utilizes the triplet
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Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Fig. 26 The Encoder-Decoder structure based on self-attention [223].

loss with hard triplet online mining for FVR. This strategy successfully veri-
fied that symmetric fingers (the same sort of finger from opposite hands in the
same individual) have enough similarities to be recognized. The similarities
of other asymmetric fingers are also proved in [202], but the proposed recog-
nition system can still not effectively identify these asymmetric finger veins.
Therefore, related work can still be further explored in the future.

7 Conclusion

This paper provides a comprehensive survey of the ANN-based FVR and com-
pensates for the lack of a comprehensive survey related to ANN in the field
of FVR. A total of 149 papers have been collected to support this work. The
purpose of this paper is to discuss the FVR tasks based on ANNs. In this
paper, some FVR-related information is first presented, including the back-
ground of FVR in Sec. 1, representative network structures in Sec. 2, and
commonly used public datasets in Sec. 3. The literature review section fol-
lows this paper’s most important work. In Sec. 4, we discuss the application of
classical neural networks in FVR from the perspective of the biometric recog-
nition process, including pre-processing, feature extraction, and matching. The
classical neural networks are mainly used to perform the classification task in
FVR. The MLP and ANFIS are the most widely used in these networks. In
Sec. 5, we discuss the application of deep neural networks in FVR from tasks
of the papers. In these papers, the typical networks such as AlexNet, VGGNet,
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ResNet, etc., and some custom networks demonstrate the advantages of DL
methods on FVR. The GAN and U-Net show their excellent performance on
finger vein image enhancement tasks and segmentation tasks, respectively. In
addition, the PAD and template protection tasks on FVR are researched, and
these researches achieve outstanding performance. The end of this survey sum-
marizes some typical challenges in FVR and suggests potential directions for
FVR. This content can inspire future research in the field of FVR.
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