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Few-shot Class-incremental Learning for Retinal
Disease Recognition

Jinghua Zhang, Peng Zhao, Yongkun Zhao, Chen Li, and Dewen Hu

Abstract— Few-Shot Class-Incremental Learning (FSCIL)
techniques are essential for developing Deep Learning
(DL) models that can continuously learn new classes
with limited samples while retaining existing knowledge.
This capability is particularly crucial for the DL-based
retinal disease diagnosis system, where acquiring large
annotated datasets is challenging, and disease pheno-
types evolve over time. This paper introduces Re-FSCIL,
a novel framework for Few-Shot Class-Incremental Retinal
Disease Recognition (FSCIRDR). Re-FSCIL integrates the
RETFound model with a fine-grained module, employing
a forward-compatible training strategy to improve adapt-
ability, supervised contrastive learning to enhance feature
discrimination, and feature fusion for robust representation
quality. We convert existing datasets into the FSCIL format
and reproduce numerous representative FSCIL methods
to create two new benchmarks, RFMiD38 and JSIEC39,
specifically for FSCIRDR. Our experimental results demon-
strate that Re-FSCIL achieves State-of-the-art (SOTA) per-
formance, significantly surpassing existing FSCIL methods
on these benchmarks.

Index Terms— Retinal disease, Class-incremental learn-
ing, Few-shot learning, Deep learning, Foundation model

I. INTRODUCTION

According to the World Health Organization’s World Report
on Vision 2019, approximately 2.2 billion people globally are
affected by visual impairment, with at least 1 billion of these
cases being preventable or yet to be addressed [1]. Retinal
diseases contribute to these impairments, highlighting the
critical need for early screening and diagnosis [2]. The retina
at the back of the eye plays a vital role in vision by converting
incoming light into electrical signals and transmitting them to
the brain via the optic nerve [3]. Due to its unique charac-
teristics, the retina can reveal not only eye-specific diseases
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but also broader physiological conditions, particularly those
related to the circulatory system and neurological disorders [4].
Color fundus photography has achieved significant success in
diagnosing various chronic systemic diseases such as diabetes,
hypertension, and other cardiovascular conditions [5], [6].
Given its ability to non-invasively observe retinal microcircu-
lation, it is also used for the identification of retinal diseases.

However, current diagnostic methods primarily rely on
doctors’ experience and subjective judgment, leading to in-
consistent results [7]. Doctors analyzing retinal images may
produce varying diagnoses due to differences in experience,
fatigue, or other subjective factors, adding uncertainty and
potential risk to medical decisions. Moreover, in underdevel-
oped regions, the scarcity of medical resources, the variety
of diseases, and the demand for large-scale screening further
complicate diagnosis [8], [9]. These areas often lack adequate
medical equipment and trained professionals to handle the high
screening workload, resulting in many patients not receiving
timely and accurate diagnosis and treatment. This situation
highlights deficiencies in the healthcare system regarding
technology, resources, and training, calling for increased sup-
port and improvements to enhance diagnostic consistency
and coverage. To address these limitations, the application of
computer vision-based artificial intelligence technologies has
increased, providing fast, objective, and efficient solutions for
the diagnosis of retinal diseases [10]–[12].

Existing vision-based Computer-assisted Diagnosis (CAD)
for retinal diseases can be broadly divided into two categories:
traditional methods [13]–[15] and Deep Learning (DL)-based
vision methods [16]–[19]. Traditional methods, which address
issues in retinal recognition, generally rely on expert domain
knowledge to design specialized recognition strategies. How-
ever, these strategies are tailored to specific problems, leading
to poor generalization performance. In contrast, current DL
methods have resolved many shortcomings of traditional meth-
ods by improving generalization through automatic feature
learning [20]–[24], but they still have some drawbacks. Despite
achieving many successes in accuracy and efficiency, DL-
based retinal disease diagnosis technologies face numerous
challenges in practical applications. One major issue is the
reliance on large annotated datasets for training. In the medical
imaging field, especially in collecting and annotating reti-
nal images, data collection is difficult and time-consuming,
resulting in limited data availability. Additionally, there is
a scarcity of expert-labeled data, and training high-quality
models requires a substantial amount of annotated data. This



2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

dependence on large datasets limits the rapid dissemination
of the technology and creates a demand for models that can
effectively train on limited samples. Moreover, most existing
DL methods for retinal diagnosis are static; once trained, they
struggle to adapt to new data or changes in the environment.
However, medical data and disease phenotypes are constantly
evolving, and updates in pathological information and diagnos-
tic standards require diagnostic systems to dynamically adapt
to these changes.

In this context, Few-Shot Class-Incremental Learning (FS-
CIL) techniques become particularly important as they enable
models to continuously learn new class knowledge and retain
existing knowledge even with limited training samples [25].
Therefore, exploring the application of FSCIL in retinal dis-
ease diagnosis can significantly reduce data annotation costs
and decrease computational demands due to retraining, thereby
facilitating the widespread use and development of DL-based
retinal disease diagnosis technologies. To understand how
Few-Shot Class-Incremental Retinal Disease Recognition (FS-
CIRDR) works, we provide the illustration in Fig. 1.

This paper is dedicated to the study of FSCIRDR. We
propose a framework named Re-FSCIL, which integrates the
foundational RETFound model with a fine-grained module
to enhance retinal disease recognition. Re-FSCIL employs a
“Feature Embedding + Nearest Mean Classifier” strategy to
mitigate overfitting and catastrophic forgetting while ensuring
adaptability to new classes. To enhance the model’s adaptabil-
ity to future incremental classes, we incorporate a forward-
compatible training strategy by generating virtual classes.
These virtual classes simulate potential future classes, allowing
the model to effectively foresee and adapt to new classes.
Additionally, we introduce supervised contrastive learning
to our framework. This technique aims to minimize intra-
class differences and maximize inter-class separation, thereby
improving the model’s ability to distinguish between different
retinal diseases with subtle visual differences. Furthermore, we
enhance feature extraction by integrating features from the pre-
trained RETFound model. RETFound, pre-trained on a large-
scale dataset of retinal images, provides robust and represen-
tative features. We ensure comprehensive and accurate feature
representation by fusing these features with those extracted
from our fine-grained module. Overall, our comprehensive
framework addresses the challenges of FSCIRDR by incor-
porating forward-compatible training, supervised contrastive
learning, and feature fusion, providing a scalable and robust
solution for continuous learning in retinal disease classifica-
tion. The key contributions of this work can be summarized
as follows:

• Fine-grained Module for Learning Better Features:
Considering the high similarity among different reti-
nal diseases, we developed a specifically designed fine-
grained module to extract superior features, enhancing
the model’s capability in the recognition process.

• Novel Method for FSCIRDR: We introduce the Re-
FSCIL framework for FSCIRDR, which integrates the
RETFound model with the fine-grained module. Our
framework employs a forward-compatible strategy to
improve adaptability for future classes and utilizes su-

pervised contrastive learning for better feature discrimina-
tion. To our knowledge, this is the first method to explore
FSCIL in retinal disease recognition.

• New Benchmarks for FSCIRDR: Based on the exist-
ing retinal disease datasets, we constructed two datasets
(RFMiD38 and JSIEC39) for FSCIL and established
testing protocols. We reproduced representative methods
on these two datasets, creating new benchmarks for
FSCIRDR. This work sets new standards and fosters
further exploration within the FSCIRDR community.

• State-of-the-Art Performance: We demonstrate that the
proposed method significantly surpasses existing ad-
vanced FSCIL methods on the RFMiD38 and JSIEC39
datasets, establishing new State-of-the-art (SOTA) perfor-
mance benchmarks.

The structure of this paper is organized as follows: Section II
introduces related work. Section III details the problem setting,
challenges, and our method. Section IV discusses datasets and
implementation details and provides results and analysis of the
experiments. Finally, conclusions are presented in Section V.

II. RELATED WORK

This section discusses the relevant knowledge encompassing
retinal disease recognition, FSCIL, and foundation models.

A. Retinal Disease Recognition
CAD techniques have been widely implemented for the

detection and diagnosis of retinal diseases such as diabetic
retinopathy, glaucoma, and age-related macular degeneration.
Many studies [16]–[18], [26]–[29] have enhanced the clas-
sification and diagnostic accuracy of these diseases through
the use of DL-based algorithms. For instance, the binary
classification methods proposed by Gulshan et al. [26], en-
semble strategies introduced by Zhang et al. [27], and the
solution for long-tailed data distribution in retinal disease
diagnosis proposed by Ju et al. [28] and Zhou et al. [29].
Additionally, the ADINet framework has been proposed by
Meng and Shin’ichi [30], integrating class label prediction and
attribute prediction into an incremental learning framework.
By applying knowledge distillation and attribute distillation
techniques, ADINet effectively enhances performance. Al-
though incremental technologies have been applied to diagnose
retinal diseases, the application of FSCIL in this field has
not been studied. FSCIL is particularly crucial for retinal
disease diagnosis as it effectively handles newly emerging
classes with scarce samples. This technique allows diagnostic
systems to retain knowledge of existing classes while learning
new ones, facilitating adaptation to changes in the medical
environment. It enhances the diagnostic efficiency for rare
diseases and reduces dependence on large-scale annotated
data, thus improving the system’s flexibility and adaptability
in practical applications.

B. Few-shot Class-incremental Learning
FSCIL is a new topic in machine learning aimed at de-

signing algorithms that can continuously learn new class
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Fig. 1: Illustration of the FSCIRDR process. As time progresses, retinal disease data continuously updates and evolves. Given
the high costs associated with data collection and annotation, it is essential for the model to learn new classes with only a few
training examples continuously.

knowledge from a limited number of training samples while
preserving previously learned class knowledge [25], [31],
[32]. This technology has attracted widespread attention and
spurred the development of various algorithms, which can
be divided into two main types: one uses a “Feature Ex-
tractor + Softmax Classifier” approach, where the entire net-
work is trainable throughout the incremental learning process.
To counteract catastrophic forgetting, it often incorporates
additional mechanisms to consolidate old knowledge while
learning new information, such as data replay and knowl-
edge distillation. Another employs a “Feature Embedding +
Nearest Mean Classifier” strategy, focusing on training an
embedding network that maps samples into a feature space to
highlight semantic differences, followed by classification using
the nearest mean classifier. This typically involves learning
an effective backbone, averaging the feature embeddings of
the training data to serve as prototypes for the respective
classes, and using metrics like cosine similarity for predicting
testing data. Several representative methods [33]–[40] have
been developed for FSCIL. The CEC algorithm [34] employs
a graph attention network to update relationships between
base and new prototypes, aiding classifiers in finding more
precise decision boundaries in complex data environments.
The FACT framework [35] introduces the concept of forward
compatibility to enhance the model’s adaptability to future
incremental classes. Although these technologies have begun
to be applied in other medical diagnostic areas such as
skin disease classification [41], there has yet to be research
exploring the application of FSCIL in retinal disease diagnosis.

C. Foundation Models
Recently, the rise of foundation models has sparked exten-

sive discussions, particularly with the emergence of vision-
language models and vision-based models. These models have
achieved significant success in traditional computer vision and
natural language processing tasks and have excelled in cross-
modal learning and multimodal tasks. Recently, a series of

works [42]–[45] have applied CLIP [46] to general FSCIL
problems, leveraging approaches such as CA-CLIP proposed
by Xu et al. [42], PL-FSCIL proposed by Tian et al. [43], and
CPE-CLIP proposed by D’Alessandro et al. [44]. However,
despite CLIP’s effectiveness in general FSCIL tasks, its lack
of specialization for retinal image analysis poses potential
challenges in the specific domain of retinal disease diagnosis.
Recently, a retinal image model named RETFound [11] has
gained widespread attention. This model utilizes large-scale
unlabeled retinal images for self-supervised learning, thereby
acquiring universal retinal representations. Subsequently, the
model is fine-tuned on tasks with explicit labels, resulting in
significant performance improvements. Therefore, considering
its superior performance in specialized domains, we plan to
introduce the RETFound model into the problem of FSCIRDR
to enhance the model’s generalization ability and adaptability.

III. METHOD

In this section, we first define FSCIL’s problem setting.
Then, we analyze FSCIRDR’s challenges. We then outline the
proposed framework and provide a comprehensive breakdown
of its components.

A. Problem Setting

Consider {D0
train, · · · , Dn

train} and {D0
test, · · · , Dn

test} as
the training and testing datasets for the FSCIL, respectively.
Here, n represents the number of incremental sessions within
the current FSCIL task. D0

train is the training dataset for the
base session, which includes a substantial amount of labeled
training data. For any integer i from 1 to n, Di

train adopts
an N−way K−shot format, meaning that the training dataset
for session i comprises N classes, each with K labeled
samples. Di

test represents the testing dataset for session i.
For any integers i, j ranging from 0 to n where i ̸= j, the
corresponding label spaces of Di

train and Di
test, denoted as

Ci, do not intersect, i.e., Ci∩Cj = ∅. When the learning
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process progresses to session i, only Di
train is accessible,

while the complete training datasets from previous sessions are
unavailable. The evaluation for session i includes the testing
datasets from all previous and current sessions, denoted as
D0

test ∪ · · · ∪Di
test.

B. Challenge Analysis
In this study, we examine the principal challenges encoun-

tered in FSCIRDR, which include the overfitting problem
due to limited training data, the catastrophic forgetting during
incremental learning, and the fine-grained challenge among
retinal disease classes.

1) Overfitting: In FSCIRDR, limited data availability often
directs the model training efforts toward minimizing prediction
errors on the training dataset. This approach is particularly
prone to significant discrepancies between empirical and ex-
pected risks when the dataset adopts an N−way K−shot
format, leading to the overfitting problem where the model
performs well on training data but fails on test data. Fur-
thermore, as the new classes are incrementally added, con-
tinuous reliance on this unreliable empirical risk minimization
strategy may hinder the model from achieving an ideal state,
challenging the model’s reliability and stability in current and
subsequent sessions.

2) Catastrophic Forgetting: FSCIRDR demands a balance
between maintaining stability for previously learned knowl-
edge and exhibiting plasticity for new classes. Indiscriminate
optimization of existing model parameters when introducing
new classes could lead to decision boundaries biased towards
new classes, resulting in catastrophic forgetting. Conversely, a
moderate focus on the stability of old knowledge could allow
the model’s ability to learn new tasks.

3) Fine-grained Challenges: When dealing with various
retinal diseases, the visual differences between the classes are
often subtle, requiring precise discriminative abilities from
the model. Introducing new classes similar to existing ones
can make classification more difficult and confuse the model
between old and new classes. Moreover, having limited data
for new classes and their strong resemblance to old ones makes
it challenging for the model to accurately differentiate and
adapt to these new, fine-grained classes.

C. Our Framework
In response to the aforementioned challenges, we introduce

a specialized FSCIL framework for retinal disease recognition,
Re-FSCIL, as depicted in Fig. 2. This framework integrates the
foundational RETFound model with a fine-grained module.
Based on existing related methods [25], [34], [47], [48],
which indicate that the “Feature Embedding + Nearest Mean
Classifier” strategy is currently a cost-effective approach for
FSCIL settings, our Re-FSCIL also adopts this strategy. Dur-
ing the base session, the model is initialized, and in subsequent
incremental sessions, the parameters are frozen to extract class
prototypes and classify testing samples using the nearest mean
classifier. Since class prototypes are obtained by averaging
the feature embeddings of each class, there is no need to
retrain the model. This method helps avoid overfitting caused

by retraining with limited samples and mitigates catastrophic
forgetting to some extent. This strategy does not rely on data
replay and knowledge distillation when handling incremen-
tal sessions, thereby avoiding memory requirements, privacy
risks, and potential data imbalance issues. However, directly
using this strategy may limit the model’s ability to adapt to
future new classes, especially when there is a high degree of
fine-grained similarity between new and old classes.

To address these concerns, we employ a series of strategies.
Specifically, the training process is divided into two main
stages: base training and prototype generation. The base
training comprises three pivotal components: first, forward
compatibility training of the fine-grained module, emphasizing
forward compatibility by simulating potential future classes to
provide a foresight perspective; second, enhancement of the
model’s discriminative ability through supervised contrastive
learning, focusing on improving the capability to differentiate
subtle features; and third, integration of pre-trained knowledge
from the foundational model to bolster feature representation.
Detailed descriptions of these components are described in
subsequent sections. During the prototype generation phase,
the model parameters established in the base session are
fixed, and features are extracted and averaged from each
class’s training samples to formulate class prototypes. These
prototypes subsequently act as weights for a cosine similarity-
based classifier, facilitating accurate classification.

1) Forward-compatible Fine-grained Module: As shown in
Fig. 2, our forward-compatible fine-grained module comprises
ResNet and self-attention. In conventional visual tasks, the
high-level features learned by deep neural networks can ef-
fectively handle coarse-grained tasks. However, in the field of
retinal disease classification, distinguishing between diseases
is a significant challenge due to the subtle visual differences
between disease types, which can be regarded as a fine-grained
recognition problem. Additionally, since FSCIRDR involves
multiple incremental stages, it falls under the category of long-
sequence tasks. Each stage involves completely independent
retinal disease classes, requiring the model to have good fine-
grained discrimination ability and to adapt to new disease
recognition tasks. Under these conditions, many attention
mechanisms need to be adjusted for specific tasks, whereas
the self-attention model can adapt well to long-sequence and
complex dependency tasks. Besides, considering that the self-
attention mechanism has been widely applied and has shown
excellent results in fine-grained recognition and FSCIL tasks,
we introduced the self-attention mechanism to enhance the
model’s ability to learn fine-grained feature representations.

Due to the adoption of the “Feature Embedding + Nearest
Mean Classifier” strategy to handle FSCIRDR, our frame-
work’s ability to adapt to future changes is somewhat limited.
To address this, we provide more forward-looking perspectives
for our framework during the base session training, enabling
the model to handle new classes in the future. Specifically, we
employed a forward-compatible strategy by creating virtual
classes to simulate potential future incremental classes. These
virtual classes, generated using rotation augmentation, are
combined with the real base classes to finish the training
of our framework. The generation process can be expressed
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Fig. 2: Our proposed Re-FSCIL framework. (a) shows the training process in the base session. Initially, training samples are
augmented into various forms required by different modules. Subsequently, augmented images with virtual classes are fed into
the encoder to obtain initial features. Then, the features of ResNet processed by the self-attention module are fused with the
features of RETFound after dimensionality reduction. The framework is then optimized using cross-entropy loss. Moreover,
the augmented key and query images are utilized for supervised contrast loss to optimize the model further. (b) illustrates the
process of generating class prototypes. After completing the base training, the model’s parameters are fixed, and class prototypes
are calculated by averaging the features of samples from each class, which are then used for subsequent classification.

as F(x, y) = {(xm, ym)}Mm=1, where (xm, ym) denotes the
m-th transformation applied to (x, y), and F represents the
transformation function. Note that (x1, y1) represents the
original image-label pair and M = 2 in this paper. The
virtual class generation can enrich the training samples, act
as placeholders in the feature space for future updates, and
help compress existing class distributions in the feature space
to enhance discrimination. This approach ensures that the
model can handle current tasks and is also well-equipped for
upcoming classes, significantly improving its performance in
scenarios requiring fine-grained FSCIL.

2) Fusion with Foundation Model Feature: Although the Re-
FSCIL framework adopts the “Feature Embedding + Nearest
Mean Classifier” strategy for classification, the fine-grained
module, which completes parameter initialization based only
on the training data from the base session, may not ensure
that the model learns sufficiently discriminative and represen-
tative features for new classes. While the forward-compatible
strategy has been implemented to improve adaptability to in-
cremental classes to some extent, this is not entirely adequate.

Recent studies have shown that foundation models pre-
trained on extensive datasets can exhibit excellent performance
on certain classification tasks without any training samples.
Thus, we consider incorporating knowledge from foundation
models to enhance our framework’s overall feature extraction
capability. Since general foundation models may not be well-

suited to specialized analytic tasks such as retinal disease
recognition, we propose integrating the RETFound model,
which has been pre-trained on a large-scale dataset of reti-
nal images. RETFound employs the self-supervised learning
approach, Masked Autoencoder (MAE), to pre-train the large
vision Transformer on 1.6 million unlabeled retinal images. It
has demonstrated good adaptability in many downstream tasks.
The core idea of MAE is to mask a portion of the pixels in
an image and then train the model to reconstruct the masked
parts, significantly enhancing the model’s understanding and
representation of images.

In our framework, we use a fully connected layer to reduce
the dimensionality of the features extracted by RETFound and
fuse them with the features extracted by our fine-grained mod-
ule. Initially, combined with the virtual classes, our training for
our framework guided by a simple cross-entropy loss function
can be expressed as:

Ltotal (ϕ;xm, ym) = Lce (ϕ (xm) , ym) , (1)

where Lce (·) denotes the CE loss, x represents the sample, y
is the corresponding label, and the model ϕ (·) consists of our
fine-grained module and RETFound feature extractor, which
can be expressed as:

ϕ (·) =WT g (·) =WT ((1− α) ffg (·) + αfre (·)) , (2)

where W represents the classifier, ffg (·) is the fine-grained
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module, fre (·) denotes the RETFound feature extractor, and
α is the weight for fusing the features. It is important to note
that the testing data used in our experiments are independent
of the training data used by RETFound.

3) Supervised Contrast Learning: Although the introduction
of the self-attention mechanism improves the model’s ability
to discriminate different retinal diseases to some extent, it is
not sufficient to train the fine-grained module by conventional
cross-entropy loss. Therefore, in order to further improve
the model’s ability to identify different retinal diseases, we
introduce supervised contrast loss Lsup, which is designed
to minimize intra-class differences while maximizing inter-
class separation, thereby enhancing the model’s performance
in classifying different retinal diseases. Specifically, given a
batch of image-label pairs {(xi, yi)}bi=0, where each image
undergoes random augmentations to generate a query view
xq = Augq (x) and a key view xk = Augk (x), these views
are then fed in ψ (·) to get L2-normalized representations q
and k, where ψ = h ◦ g is composed of the entire image
encoder g and a projector h. The supervised contrastive loss
Lsup is calculated using these representations to optimize the
model’s feature discrimination capabilities, formulated as:

Lsup(ψ;xi, yi, T ) = − 1

|k+|
∑

k+∈k+

log
exp(qTi k+/T )∑
k∈k exp(q

T
i k/T )

, (3)

where k is the set of all the key representations, k+ denotes
positive set, i.e., those in k belonging to the same class with xi,
and the T is a temperature parameter. After the introduction
of the supervised contrastive loss, the joint training loss can
be formulated as follows:

Ltotal = Lce + βLsup, (4)

where Lce denotes the cross-entropy loss function, Lsup

represents the supervised contrast loss function, and β is a
hyper-parameter that weights the importance of Lsup.

4) Prototype Generation and Inference: After training in the
base session, the model’s parameters are fixed to generate the
prototypes in the classifier. As shown in Fig. 2, for session I ,
each class is augmented to generate a corresponding virtual
class. The fixed model is then used to calculate the prototypes
by averaging the feature embeddings extracted from both the
real and virtual classes. These prototypes are concatenated
with the previous ones in the classifier. The process can be
described as:

W =

I⋃
i=0

{
wi

cm | 1 ≤ c ≤ |Ci|, 1 ≤ m ≤M
}
, (5)

where wt
ij represents the prototypes. During the inference,

we use the same method to augment the test sample: F(x) =
{xm}Mm=1. Then, we aggregate the inference results based on
the predictions for both the real and virtual samples:

cx = argmax
c,i

M∑
m=1

sim
(
g (xm) ,wi

cm

)
, (6)

where sim (p,q) = pTq/ (∥p∥ ∥q∥) is cosine similarity
between two vectors.

IV. EXPERIMENTS

A. Dataset and Metric
RFMiD38: The RFMiD dataset [1] is a publicly available

dataset designed to detect multiple retinal diseases, containing
46 different disease conditions. Given the uneven sample
distribution across classes in this dataset, we have selected
38 classes to construct a new benchmark for FSCIRDR.
We use 20 classes as base classes and 18 as incremental
classes. These 18 incremental classes are divided into six
incremental sessions, each covering three classes with three
training samples per class, thus establishing a 3−way 3−shot
configuration. Examples of some samples are shown in Fig. 3.

Diabetic retinopathy Media Haze Optic disc cuppingNormal

Tessellation Drusens Age-related macular 
degeneration Myopia

Fig. 3: Examples in the RFMiD38 dataset.

JSIEC39: The JSIEC dataset [49] is another publicly
available dataset used for the detection of various retinal
diseases. It contains 39 classes sourced from the Joint Shantou
International Eye Centre, China. The number of samples varies
across different classes. We use 21 classes as base classes and
18 as incremental classes. These 18 incremental classes are
further divided into 6 incremental sessions, each covering 3
classes with 3 training samples per class, thereby establishing
a 3−way 3−shot configuration. Examples of some samples
are shown in Fig. 4.

Vessel tortuosity Fibrosis Vitreous particlesNormal

Laser Spots Maculopathy Possible glaucoma Pathological myopia

Fig. 4: Examples in the JSIEC39 dataset.

To comprehensively evaluate our framework, we utilized
three metrics: 1) Accuracy values for each session; 2) The
Performance Drop (PD) rate [34], which measures the ab-
solute decline in accuracy from the initial session to the final
session; 3) The Average Accuracy (AA) across all sessions. For
accuracy and AA, higher values indicate better performance,
while for PD, lower values are preferable.
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B. Implementation Details
In our framework, we use the RETFound model,

‘vit large patch16,” which is a foundational model pre-trained
on a large-scale retinal dataset. We keep the parameters of the
RETFound model fixed throughout and use it solely for feature
extraction. The fine-grained module adopts ResNet-18 [50],
and we use the pre-trained weights provided by PyTorch for
initialization. We use SGD with 0.9 momentum to optimize
the model. The initial learning rate is 0.005 in the base session.
The training epochs are 50. For augmentation operation Aug,
only one rotation is used to generate virtual classes in this
paper. Our framework is implemented in PyTorch 2.2 and
Python 3.9 and trained on the Nvidia Tesla V100 GPU.

C. Comparison with State of The Arts
This study evaluates our method alongside several advanced

methods on RFMiD38 and JSIEC39. Since we conducted a
benchmark study, we provide detailed information about each
compared method:

• RETFound [11]: It is a foundational model for retinal
images that learns generalizable representations from 1.6
million unlabelled retinal images using self-supervised
learning. It can be used for various downstream tasks
in retinal disease diagnosis.

• CEC [34]: It tackles FSCIL by updating only the classi-
fiers in each incremental session to avoid knowledge for-
getting. It also introduces a continually evolved classifier
that uses the graph attention network to propagate context
information between classifiers for better adaptation.

• FACT [35]: It handles FSCIL by learning prospectively
to prepare for future updates. It uses a forward-compatible
training strategy to reserve embedding space for future
new classes by assigning virtual prototypes, allowing
the model to incorporate new classes efficiently while
resisting forgetting old ones.

• BiDist [51]: It adapts KD for FSCIL using two teacher
models: one trained on abundant base class data to reduce
overfitting of novel classes, and the other from the last
incremental session to alleviate forgetting. An adaptive
strategy and a two-branch network with an attention-
based aggregation module combine these guidances and
preserve base knowledge.

• SAVC [48]: Similar to FACT, it adopts a forward-
compatible strategy by introducing virtual classes to
enhance supervised contrastive learning, facilitating the
separation. These virtual classes act as placeholders for
unseen classes in the representation space and provide
diverse semantic information.

• TEEN [36]: It uses a training-free calibration strategy
to enhance the discriminability of new classes by fusing
the new prototypes with weighted base prototypes, thus
improving the classification performance of new classes.

Tab. I and Tab. II provide detailed accuracy performance
for each method in different sessions on the RFMiD38 and
JSIEC39 datasets, also including AA and PD. Additionally, to
demonstrate the performance variations of each method across
different sessions, we have plotted the performance in Fig. 5.

Notably, there is a significant performance disparity between
these two datasets for all methods, indicating the substantial
impact of dataset characteristics on performance.

TABLE I: Comparison with SOTA methods on RFMiD38.
We implemented the results of the compared methods on the
RFMiD38 dataset using the officially published code. (In %)

Method Venue
Acc. in each session

AA↑ PD↓
0 1 2 3 4 5 6

RETFound Nature23 52.09 36.41 29.38 33.22 30.10 28.09 25.28 33.51 26.81
CEC CVPR21 28.12 27.33 22.78 22.56 22.01 22.08 18.56 23.35 9.56
FACT CVPR22 21.42 16.27 12.60 15.80 13.39 11.97 9.17 14.37 12.25
BiDist CVPR23 21.23 19.85 18.94 16.89 15.66 14.60 13.21 17.20 8.02
SAVC CVPR23 58.11 56.27 46.75 46.93 45.83 44.92 37.89 48.10 20.22
TEEN NIPS24 18.05 11.77 9.40 10.07 9.07 8.88 8.11 10.76 9.94

Re-FSCIL Ours 64.83 62.32 53.51 53.86 51.69 49.41 42.72 54.05 22.11

TABLE II: Comparison with SOTA methods on JSIEC39. We
implemented the results of the compared methods on the
JSIEC39 dataset using the officially published code. (In %)

Method Venue
Acc. in each session

AA↑ PD↓
0 1 2 3 4 5 6

RETFound Nature 23 73.53 66.25 62.39 57.95 58.74 55.20 51.67 60.82 21.87
CEC CVPR21 47.56 46.82 43.34 39.10 37.39 28.80 32.20 39.32 15.36
FACT CVPR22 24.57 21.02 19.05 17.31 18.66 13.40 15.40 18.49 9.17
BiDist CVPR23 31.50 28.33 27.33 26.65 24.87 22.64 20.47 25.97 11.03
SAVC CVPR23 85.14 81.52 75.91 74.30 73.35 67.4 65.93 74.79 19.21
TEEN NIPS24 26.71 24.27 20.66 19.55 20.47 15.00 16.33 20.43 10.38

Re-FSCIL Ours 90.63 85.93 76.39 75.78 77.54 71.60 71.40 78.47 19.23
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Fig. 5: Comparison with SOTA methods on RFMiD38 and
JSIEC39 datasets. Our method significantly surpasses existing
advanced methods.

Our Re-FSCIL method demonstrates superior performance
on both the RFMiD38 and JSIEC39 datasets. Specifically, on
the RFMiD38 dataset, Re-FSCIL achieves an AA of 54.05%
across all sessions, significantly outperforming other methods
such as RETFound (33.51%), CEC (23.35%), FACT (14.37%),
BiDist (17.20%), SAVC (48.10%), and TEEN (10.76%). In
terms of PD, our method obtains a PD value of 22.11% on the
RFMiD38 dataset. In each session, Re-FSCIL’s performance is
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outstanding. For instance, in session 0, Re-FSCIL’s accuracy is
64.83%, significantly higher than the best-performing alterna-
tive method SAVC (58.11%). In session 1, Re-FSCIL achieves
an accuracy of 62.32%, also notably higher than the second-
best method, SAVC (56.27%). Re-FSCIL maintains its leading
accuracy on subsequent sessions, such as achieving 53.86% in
session 3, compared to SAVC’s 46.93%.

Similarly, on the JSIEC39 dataset, the Re-FSCIL method
performs excellently. Our method achieves an AA of 78.47%,
far surpassing other methods such as RETFound (60.82%),
CEC (39.32%), FACT (18.49%), BiDist (25.97%), SAVC
(74.79%), and TEEN (20.43%). In each session on the
JSIEC39 dataset, Re-FSCIL continues to demonstrate out-
standing performance. For example, in session 0, Re-FSCIL
achieves an accuracy of 90.63%, far exceeding the best al-
ternative method SAVC (85.14%). In session 1, Re-FSCIL’s
accuracy is 85.93%, significantly higher than the second-best
method SAVC (81.52%). In subsequent sessions, Re-FSCIL
maintains its superior accuracy, such as 75.78% in session 3,
compared to SAVC’s 74.30%.

To illustrate the specific classification performance of our
proposed method on each base and incremental class, re-
fer to the confusion matrices provided in Fig. 6(d) and
Fig. 6(h), which show the model’s performance on RFMiD38
and JSIEC39 datasets in the last incremental session. Our
method effectively classifies both base and incremental classes,
demonstrating the ability to address potential overfitting issues,
catastrophic forgetting, and fine-grained challenges.

In summary, our Re-FSCIL method surpasses existing meth-
ods on both the RFMiD38 and JSIEC39 datasets in terms
of accuracy and stability. These outstanding results indicate
that our method has significant advantages and reliability in
handling complex situations and adapting to various scenarios.
However, the performance differences between datasets high-
light the crucial impact of dataset characteristics on algorithm
performance. Specifically, factors such as dataset size and
quality, annotation accuracy and consistency, class distribution
and imbalance, disease characteristics and complexity, and
image acquisition methods and conditions can all affect model
performance. Therefore, when evaluating algorithms, it is
essential to consider the diversity of dataset characteristics to
fully reflect the algorithm’s applicability and stability. This
reminds us that in practical applications, algorithm selection
and adjustments should be made based on the specific char-
acteristics of the dataset to achieve optimal performance.

D. Ablation Study

To substantiate the significance of our proposed compo-
nents, we conducted ablation studies focusing on the key
aspects of our method. These components include the founda-
tion model, the fine-grained module, supervised contrastive
learning, and a forward-compatible strategy. We report the
results for RFMiD38 in Tab. III and JSIEC39 in Tab. IV,
demonstrating the impact of each component on the overall
performance.

Compared to the initial baseline model RETFound, the
integration of a fine-grained module has resulted in significant

TABLE III: Ablation study on RFMiD38. For short, FM stands
for the foundation model; FG stands for the integration of
fine-grained module; SC represents the supervised contrastive
learning; FC indicates the forward-compatible strategy. (In %)

FM FG SC FC
Acc. in each session

AA↑ PD↓
0 1 2 3 4 5 6

✓ 52.09 36.41 29.38 33.22 30.10 28.09 25.28 33.51 26.81
✓ ✓ 54.31 52.00 43.53 41.67 40.27 38.48 32.56 43.26 21.76
✓ ✓ ✓ 57.89 51.72 43.35 45.40 44.25 42.46 36.89 45.99 21.00
✓ ✓ ✓ ✓ 64.83 62.32 53.51 53.86 51.69 49.41 42.72 54.05 22.11

TABLE IV: Ablation study on JSIEC39. For short, FM stands
for the foundation model; FG stands for the integration of
fine-grained module; SC represents the supervised contrastive
learning; FC indicates the forward-compatible strategy. (In %)

FM FG SC F
Acc. in each session

AA↑ PD↓
0 1 2 3 4 5 6

✓ 73.53 66.25 62.39 57.95 58.74 55.20 51.67 60.82 21.87
✓ ✓ 77.11 73.61 66.25 63.44 63.97 70.60 59.27 67.75 17.85
✓ ✓ ✓ 85.77 80.07 75.16 72.28 71.76 75.40 62.60 74.72 23.17
✓ ✓ ✓ ✓ 90.63 85.93 76.39 75.78 77.54 71.60 71.40 78.47 19.23

AA improvements on the RFMiD38 and JSIEC39 datasets,
achieving increases of 9.75% and 6.93%, respectively. This
enhancement enables our framework to distinguish between
fine-grained retinal disease classes effectively. Supervised con-
trastive learning further improves the model’s classification
capability for fine-grained classes, enhancing its understanding
of inter-class differences. This approach brings additional AA
gains of 2.73% and 6.97% on the RFMiD38 and JSIEC39
datasets, respectively. However, we observed that not all in-
cremental sessions showed performance improvements. This is
because supervised contrastive learning focuses on enhancing
the model’s ability to discriminate between classes in the base
sessions. This phenomenon can also be seen in the confusion
matrices in Fig. 6, where the accuracy for base session classes
increases. However, the performance in incremental sessions
remains mediocre. This does not indicate instability in the
model’s performance but rather reflects the different emphases
of each module. To further enhance generalization capabilities,
we introduced a forward-compatible strategy after supervised
contrastive learning. This strategy generates virtual classes
to simulate potential future classes, thereby enhancing the
model’s generalization capability. As a result, this approach
leads to further AA improvements of 8.06% and 3.75% on
the RFMiD38 and JSIEC39 datasets, respectively.

E. Visualization

To further investigate the contributions of each component
of our framework, we display the confusion matrices generated
by models in the last incremental session of our ablation stud-
ies on the RFMiD38 and JSIEC39 datasets in Fig. 6. Redder
diagonals indicate higher classification accuracy against a dim
background. Our observations reveal that the baseline model
RETFound performs poorly on these datasets. However, with
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the integration of different components, the model exhibits a
noticeable improvement in performance for both new and old
classes. This demonstrates that our method effectively adapts
to new classes and accurately recognizes old classes, avoiding
confusion in established decision boundaries.

To validate the effectiveness of our method in classifying
classes in FSCIRDR, we visualized the feature space of the
JSIEC39 dataset using t-SNE in the final session and roughly
drew decision boundaries using the Support Vector Machine
(SVM) (please note that these are not the actual decision
boundaries, but are shown for better illustration), as shown
in Fig. 7. To investigate each component of our framework’s
contribution further, we randomly selected 4 base classes and
2 incremental classes and evaluated the separation degree in
the feature space of the original RETFound model and the
model with our components incrementally added. The red
circles in the figure indicate poorly separated classes. It can be
observed that our complete framework significantly enhances
the separation of previously poorly separated classes. These
findings underscore the superior discriminative capability of
our framework in addressing the challenges of FSCIRDR.

F. Impact of Hyper-parameter
In our framework, key hyperparameters include the balance

between our fine-grained module and RETFound features,
denoted by α in Eq. 2, and the weight of the supervised
contrastive loss, β in Eq. 4. To thoroughly assess the impact
of these hyperparameters on model performance, we show the
performance achieved in each session after the final session
learning with different parameter settings on the RFMiD38
and JSIEC39 datasets in Fig. 8. Observations indicate that
the optimal hyperparameter settings for achieving the best
performance on each dataset are: for RFMiD38, {α, β} =
{0.1, 0.5}; for JSIEC39, {α, β} = {0.2, 0.5}.

V. CONCLUSION

This paper introduced the Re-FSCIL framework for FS-
CIRDR, addressing several challenges in retinal disease di-
agnosis. Our framework integrates the RETFound model
with a fine-grained module, incorporating forward-compatible
training, supervised contrastive learning, and feature fusion
to improve model adaptability, feature discrimination, and
representation quality. We converted existing datasets into the
FSCIL format and reproduced numerous representative FSCIL
methods, establishing two new benchmarks (RFMiD38 and
JSIEC39) for FSCIRDR. We conducted comprehensive exper-
iments, including comparisons with advanced methods, abla-
tion studies, and hyperparameter analysis. Our experimental
results indicate that Re-FSCIL outperforms existing methods
on these benchmarks, representing a promising approach for
few-shot continuous learning in retinal disease classification.
However, there remains a significant performance disparity
between different datasets. Although our method performs
well on both datasets, it shows notably better performance
on JSIEC39 compared to RFMiD38. This discrepancy may
stem from differences in dataset characteristics, such as sample
distribution and data complexity. This indicates that even the

same method can exhibit significant performance variations
across different datasets, highlighting the need to consider
the diversity of dataset characteristics when designing and
evaluating algorithms.

Despite the excellent performance of our method in ex-
periments, this study has some limitations that need further
discussion. The ”Feature Embedding + Nearest Mean Classi-
fier” strategy works well for short-term incremental tasks but
has limitations for long-term incremental learning tasks. The
increase in the number of classes and the complexity of the
feature space may lead to performance degradation, suggesting
that the base model should be retrained after accumulating
a certain number of classes. Additionally, our method faces
challenges in practical applications, especially due to the
inconsistency of imaging devices and data quality. The high
cost of acquiring and annotating retinal disease samples, along
with the variations in imaging devices and data quality, can
increase the complexity of practical applications. Therefore,
appropriate adjustments to the model are necessary based
on specific application conditions to improve its robustness
and reliability. This highlights the need for further research
to address performance differences across datasets and to
optimize the algorithm’s generalization capability, ensuring
stable performance across various datasets.
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Fig. 6: Comparison of the confusion matrices of different ablation methods on RFMiD38 and JSIEC39 datasets. Redder
diagonals indicate higher classification accuracy against a dim background. FM stands for the foundation model; FG stands for
the integration of fine-grained module; SC represents the supervised contrastive learning; FC indicates the forward-compatible
strategy.
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Fig. 7: The t-SNE visualization of the features learned by different ablation methods on the JSIEC39 dataset. Classes 0-3
represent the base classes, while classes 4-5 represent the incremental classes. Different background colors show different
decision binaries. It can be found that our complete method gets the best class separation degree.
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Fig. 8: Hyper-parameter influence on RFMiD38 and JSIEC39 datasets.
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