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A B S T R A C T

Liver cancer is the predominant cause of cancer-related fatalities globally, wherein Hepatocellular Carcinoma
(HCC) and Intrahepatic Cholangiocarcinoma (ICC) emerge as the principal subtypes. Histopathology images,
revered as the definitive benchmark for liver cancer diagnosis, yield rich phenotypic information, instrumental
in facilitating disease progression prediction and potential survival prognostication. Deep learning has been
rapidly developed recently and has become the mainstream technique for liver cancer histopathology image
analysis, showing noteworthy accomplishments. This article undertakes a comprehensive examination of over
50 publications within the domain of deep learning-based liver cancer histopathology analysis, systematically
discussing many advanced approaches. We commence our exploration by elucidating diverse facets of this
field, encompassing problem formulation, general learning paradigms, and main challenges. Subsequently,
we present a meticulous summary of publicly accessible datasets and evaluation metrics. To foster a deeper
understanding of the research status of this domain, we furnish a taxonomy covering supervised learning
and weakly supervised learning approaches within the specific tasks, i.e., classification and localization for
histopathology diagnosis as well as deep learning-based survival models for disease prognosis. Finally, we
discuss existing open issues and potential future trends within the realm of computational histopathology in
liver cancer research.
1. Introduction

In the realm of cancer-related disease examination and diagnosis,
Histopathology Image Analysis (HIA), often stained with Haematoxylin
and Eosin (H&E), represents the gold standard (Xu et al., 2017). In
comparison to cytology images, histopathological images furnish more
pathological information and morphological characteristics essential
crucial for diagnosis and phenotypic information for prognosis, includ-
ing indicators like lymphocytic infiltration of cancer (Gurcan et al.,
2009). Traditionally, histopathology image diagnosis entails patholo-
gists examining images at varying magnifications under a microscope,
with diagnostic outcomes contingent solely upon the subjective judg-
ments of these experts. Notably, variations may arise due to differ-
ences in diagnostic methodologies and the varying levels of experience
among pathologists. The advent of whole slide scanners presents a
promising avenue for standardizing diagnostic procedures. During the
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nascent stages of histopathology diagnosis, several researchers delved
into quantitative image analysis for disease grading, as exemplified by
Gleason scores for prostate cancer (Epstein et al., 2016). Furthermore,
The Cancer Genome Atlas (TCGA) provides a trove of thousands of digi-
tal histopathological images for free utilization, significantly catalyzing
the advancement of computerized image analysis and machine learning
techniques.

Liver cancer stands as the two leading cause of mortality in cancer-
related diseases globally, posing a substantial threat to human well-
being (Chhikara and Parang, 2023). Within the realm of primary liver
cancer, Hepatocellular Carcinoma (HCC) and Intrahepatic Cholangio-
carcinoma (ICC) represent two distinct subtypes. Notably, HCC cases
predominate, while ICC cases remain relatively scarce (Liu et al., 2015;
Massarweh and El-Serag, 2017). Early-stage intervention holds the
promise of optimizing life expectancy and, in some cases, achieving
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complete remission (Goceri et al., 2016). However, most liver cancer
patients are diagnosed with middle or advanced stage, significantly
decreasing the overall survival (Singal et al., 2014). Various diagnostic
modalities are employed in the assessment of liver cancer, including
tumor biomarkers like Alpha-fetoprotein (AFP) (Yamamoto et al., 2010)
and Carbohydrate Antigen 19-9 (CA 19-9) (Malaguarnera et al., 2013)
for the early diagnosis and prognosis of HCC and ICC, respectively. Ad-
ditionally, medical imaging, such as Ultrasonography (US), Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron
Emission Tomography (PET) emerges as another effective diagnostic
method. However, tumor biomarker analysis entails a time-consuming
and costly procedure, while medical imaging, although valuable, offers
only preliminary diagnoses within the radiology department. As a
comparison, histopathological images are commonly used as the final
diagnosis, and still a gold standard.

In recent years, data-driven Deep Learning (DL), particularly Con-
volutional Neural Networks (CNNs), has found widespread application
across various computer vision domains, demonstrating remarkable
performance in areas such as natural image classification (Krizhevsky
et al., 2017), object detection (Liu et al., 2020), and image segmenta-
tion (Minaee et al., 2021). Among the realm of medical image analysis
within radiology, CADs based on DL techniques have achieved notable
milestones (Chen et al., 2022b) and gained preliminary exploration in
histopathology (Srinidhi et al., 2021). For liver cancer histopathology,
DL-based approaches have primarily been applied in diagnosis and
prognosis, mainly involving disease classification (Sun et al., 2019;
Liao et al., 2020) and lesion localization (Wang et al., 2021a; Feng
et al., 2021) within diagnostic models, and risk stratification in prog-
nostic models (Saillard et al., 2020; Muhammad et al., 2021). Most of
these studies have adopted supervised learning techniques, but training
a high-performance model necessitates access to substantial training
data and high-quality annotated images. The scarcity of liver cancer
histopathological images constitutes a fundamental challenge for DL
models, bringing a hurdle for the broader deployment of supervised
learning models. To overcome this challenge, transfer learning and
weakly supervised learning approaches have gained prominence in
recent years, relieving the limitations arising from the lack of training
data and the acquisition of high-quality annotated images to a certain
degree. Despite the achievements of DL-based methods on specific
datasets, the application of DL-based methods in the context of liver
cancer HIA remains infancy, and there is a need to further explore the
setting in the real clinical application.

Within this comprehensive survey, we focus on the application of
DL-based approaches in the domain of liver cancer HIA, encompassing
both HCC and ICC. It is noteworthy that approximately 85% of the
studies within this survey have directed their attention towards the
application of DL techniques in the context of HCC, reflecting the
scarcity of ICC patients for study. In contrast to several recent surveys
involving liver cancer HIA that have offered limited insights and lacked
systematic summaries, our approach aims for a more comprehensive
examination. For instance, Srinidhi et al. (2021) comprehensively sum-
marized the application of DL techniques in multiple cancer HIA,
encompassing breast, colon, lung, and others. However, this survey
ignored the specific discussion of liver cancer HIA, only involving
two papers. Calderaro and Kather (2021) and Calderaro et al. (2022)
successively reported DL techniques applied in liver cancer HIA, but
provided only brief introductions, without engaging in an in-depth
discussion of these DL models. Therefore, our endeavor seeks to bridge
this gap by offering a comprehensive survey of DL-based approaches
specifically tailored for liver cancer HIA. In doing so, we aim to not only
shed light on the current research status in this field but also provide
guidance and inspiration for innovative explorations in liver cancer
HIA, with potential applicability extending to other cancer types. The
contributions of this survey are:

• A systematic overview of advanced DL approaches was provided
2

in the context of liver cancer HIA;
• Problem definition, learning paradigms, mainstream publicly
available datasets, and evaluation metrics within this domain
were introduced;

• We presented a well-structured taxonomy for various DL tech-
niques, covering two main applications: cancer diagnosis and
prognosis;

• Finally, we deeply explored existing open issues, alongside feasi-
ble countermeasures, while discussing future directions.

We comprehensively surveyed more than 50 papers encompassing
a wide spectrum of DL applications within the domain of liver cancer
HIA, virtually encompassing the entirety of existing DL-based method-
ologies. These papers mainly span the years 2020 to 2023, reflecting
the rapid proliferation of research in this field. These pertinent jour-
nal papers and conference papers have systematically been searched
by Google Scholar and databases such as IEEE Xplore, Elsevier, SPIE,
Springer, Nature, Wiley online library. Keywords used to research related
papers are: (‘‘liver cancer’’ or ‘‘hepatocellular carcinoma’’ or ‘‘intrahep-
atic cholangiocarcinoma’’) and (‘‘histopathology’’ or ‘‘Whole-slide Images
(WSIs)’’ or ‘‘digital pathology’’) and (‘‘deep learning’’ or ‘‘convolutional
neural networks’’ or ‘‘deep neural networks’’). To present an accurate
representation of the research landscape in this domain, our review
prioritizes papers published in top-tier journals and conferences, as
well as the most influential, enlightening, and cutting-edge studies.
This survey encompasses a broad spectrum of methodologies to discuss
specific applications, including diagnosis and prognosis. In order to
ensure the survey remains highly relevant for an extended period, our
primary focus is on cutting-edge works covering up to and including
December 2023.

The remainder of this survey is structured as follows. In Section 2,
we provide an overarching introduction that outlines the problem defi-
nition, learning paradigms, and main challenges. Besides, the taxonomy
is introduced to generalize the overall methodology in the context of DL
liver cancer HIA. Section 3 presents mainstream datasets and several
frequently-used evaluation metrics. Moving on to Section 4, we com-
mence by introducing several pre-processing methods (Section 4.1).
Subsequently, we embark on a detailed discussion of DL models applied
in liver cancer histopathology diagnosis, further categorizing them into
supervised learning and weakly supervised learning, segregated by
specific tasks, i.e., classification (Section 4.2) and localization (Sec-
tion 4.3). Section 5 discuss some survival models implemented by
DL approaches for disease prognosis. In Section 6, we discuss several
existing open issues and future directions in liver cancer HIA. To end
with a conclusion in Section 7.

2. Overview

This section aims to provide a preliminary introduction to relational
organizational structure in the context of DL-based liver cancer HIA.
This first involves the problem definition in Section 2.1. Main learning
paradigms applied in liver cancer HIA introduced in Section 2.2. Sec-
tion 2.3 discussed several core challenges. Finally, Section 2.4 presents
a structured taxonomy covering learning methodologies corresponding
to specific tasks.

2.1. The problem

The primary objective in liver cancer HIA is to develop DL models
capable of acquiring histological representation features and under-
lying characteristics. This endeavor can be divided into two distinct
sub-problems: classification and localization. When dealing with the
classification problem, the initial step involves partitioning WSIs into
numerous patches, which are then fed into the DL model for forming
the patch-level outcomes. These entail the model assigning each patch
to its designated category (e.g., cancerous or normal) within the local

region. The image-level (or slide-level) outcomes involve amalgamating
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the patch-level results by the corresponding aggregation approaches.
Conversely, localization revolves around devising algorithms, often
leveraging heatmaps or segmentation techniques, that can accurately
pinpoint target tissue regions, such as cancerous areas. Building upon
the classification problem, the network is adapted to produce proba-
bility distribution heatmaps for highlighting the abnormal regions. In
the realm of liver cancer HIA, segmentation can be likened to a pixel-
wise classification problem. Initially, the patches are input into the
segmentation model, and subsequently, they are assembled based on
their spatial distribution to generate the segmentation map of WSIs.
A key challenge in this context lies in the extraction of discriminative
histological structural features using DL models.

2.2. Learning paradigms

In the context of liver cancer HIA, this study aims to elucidate the
key learning paradigms of DL models, primarily focusing on supervised
and weakly supervised learning. While supervised learning dominates
current research, a notable segment explores weakly supervised mod-
els. The paper comprehensively details these paradigms, additionally
discussing the aggregation approaches used to form the slide-level
prediction and the general architectures in the domain of liver cancer
HIA.

Supervised learning. In supervised learning, a model is trained
ith a set of N training samples {𝑥𝑛, 𝑦𝑛}𝑁𝑛=1 of input patches x cropped

rom each WSI and the labels y. In binary classification tasks, this y is
ommonly a class label with a scalar {0, 1} whereas pixel-wise masks
n localization tasks. The goal of supervised learning is to train a model
𝜃 ∶ 𝑥 → 𝑦 to predict the data based on loss function 𝐿(�̂�, 𝑦), where the
denotes the real label and the �̂� denotes the output with the predicted

robability distribution of the model.
Weakly supervised learning. As for liver cancer histopathology

cenarios, the scarcity of high-quality annotated data poses a serious
urdle to the development of DL models. Weakly supervised learning
argely mitigates this issue and needs only coarse-grained (image-level)
abels. Specifically, given the training dataset {𝑋𝑖, 𝑌𝑖}𝑁𝑖=1, where 𝑋𝑖
epresents WSIs and 𝑌𝑖 represents the corresponding labels (i.e., weak
abels), and the DL model 𝑓𝜃 ∶ 𝑥 → 𝑦 automatically infers each
ine-grained (patch/pixel-level) labels 𝑥𝑖.
Aggregation. Within the classification problem, DL models often

redict each patch as a target category and form the patch-level out-
omes. Among the literature we surveyed, there are two main ap-
roaches used to generate the image-level outcome, including the
verage of all outcomes of the predicted patches from WSIs (1) and
he selection of the most predictive patches of the WSI (2). These two
pproaches have the capability to classify histopathology images into
he target category using a predefined threshold.

(�̂�) = 1
𝑁

𝑁
∑

𝑖=1
𝑦𝑖 (1)

𝑔(�̂�) = 1
𝑁

∑

𝑚𝑎𝑥𝑁𝑖=1𝑦𝑖 (2)

General architectures. Two main architectural frameworks are
widely used in liver cancer HIA. The first framework comprises a fea-
ture extractor coupled with a classifier, typically employing a softmax
classifier. Conversely, the second framework is the encoder–decoder
structure. When addressing classification problems, the first framework
is commonly used. Within this framework, feature vectors are extracted
by the backbone, and the classifier is responsible for the classification
of target classes. The cross-entropy loss function is generally employed
to weigh the difference between the prediction value and the actual
labels. The minimization of the loss function in DL-based models is ac-
complished iteratively through backpropagation algorithms (Rumelhart
et al., 1986). In pursuit of fostering the acquisition of both local and
global contextual information, several studies (Yang et al., 2022; Diao
3

et al., 2022; Feng et al., 2021) adopted dual parallel backbones to learn h
features from both low-scale images and high-scale images. Binary
classification and multiclass classification are the primary applications
within the classification problem domain. Distinguishing images into
cancerous or normal constitutes a common application for binary clas-
sification. In contrast, multiclass classification typically involves further
categorizing abnormal images into poorly differentiated, moderately
differentiated, and well-differentiated classes. The second framework,
the encoder–decoder structure, is usually utilized in segmentation mod-
els for addressing localization problems. In this framework, the encoder
focuses on feature extraction, while the decoder up-samples the images
to map the original size, thus forming segmentation maps. These two
architectural frameworks serve as the cornerstone of most studies, em-
ployed in both classification and localization tasks. A clear comparison
of these two architectures is presented in Fig. 1.

2.3. Main challenges

Liver cancer HIA poses a formidable challenge for training DL
models. The oversized nature of histopathological images renders it
impractical to directly input them into DL models while preserving in-
tricate details of texture and nucleus features. Additionally, histopathol-
ogy images often exhibit color inconsistency, even within patches of
the same image, thereby significantly complicating DL model identi-
fication. The scarcity of training data and the limited availability of
high-quality annotated images present a substantial challenge in the
realm of liver cancer HIA, notably impacting supervised learning. This
section elucidates the specific details of these challenges.

Oversized histopathological image. A histopathological image
ontains over 10 000 × 10 000 pixels, even up to 100 000 × 100 000
ixels (Das et al., 2020; Courtiol et al., 2018). Given the constraints
mposed by limited computational resources and memory capacities,
t becomes impractical to directly input the entirety of WSIs into a DL
odel. One straightforward approach is to down-sample the WSI to the

ppropriate size (e.g., 256 × 256 pixels), resulting in the loss of valuable
ontextual information. The other alternative, widely adopted by a
ajority of studies, is to crop WSIs into a multitude of ‘‘patches’’ (also

nown as ‘‘tiles’’) with a fixed size. Within the domain of natural image
nalysis, each image essentially represents such individual Region Of
nterest (ROI) that DL models can easily extract the corresponding
eatures, thereby striving to attain the ideal performance. However,
nlike natural images, histopathological images necessitate a nuanced
onsideration of both ROIs, such as microvascular invasion regions,
nd the surrounding texture information. Therefore, these patches may
ffer limited feature information, notably in the context of accurately
ocalizing lesions, thus underscoring the intricacies of HIA.
Color inconsistency. In the process of histopathological imaging,

anual operations (e.g., tissue section fixed, embedding, cutting, and
taining) are the critical steps. Nevertheless, influence factors, such as
he diversity of the staining procedure, may lead to the emergence
f a challenging issue—namely, intra-class color discrepancy (Zanjani
t al., 2018). An illustrative depiction of color-inconsistent images is
resented in Fig. 2. While this issue can be deemed acceptable by
athologists during the diagnostic process, its impact on the perfor-
ance of DL models is substantial. Consequently, the endeavor to

onstruct robust and universally applicable DL models for liver cancer
IA presents a formidable challenge for researchers.
Insufficient training data. Boosting the generalization capabil-

ty of DL models necessitates the availability of ample training data
oupled with high-quality labels, a circumstance that regrettably re-
ains unsatisfactory in the domain of liver cancer histopathology.
his challenge is multifaceted, encompassing several critical factors.
or example, the undertaking of labeling the WSIs, patches, or even
ndividual pixels demands the expertise of highly trained patholo-
ists, entailing labor-intensive and costly efforts. Additionally, train-
ng a high-performance DL model mandates extensive and diverse

istopathological images, often involving multi-institutions. However,
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Fig. 1. Two main architectures applied in liver cancer histopathology. (a) is ‘‘Feature extractor’’ + ‘‘Classifier’’, which is commonly used in classification or partial localization
tasks. (b) is ‘‘Encoder + Decoder’’, whose structure is usually used as the segmentation model to locate lesion regions of image patches that are stitched as the segmentation map
of WSIs.
Fig. 2. Examples of color inconsistent images from TCGA-LIHC (Erickson et al., 2016).

some studies cannot make their datasets for public utilization due
to the need to adhere to stringent institutional privacy protection
requirements safeguarding patient data.

Summary. Among the above-mentioned challenges, we can see
that these challenges largely hamper the development of DL models
in liver cancer HIA. Although various countermeasures are used in
liver cancer histopathology, they partly relieve a specific challenge
and do not fully overcome these challenges. Subsequently, the existing
countermeasures are summarized in Section 4, including pre-processing
methods (Section 4.1) and learning-efficient paradigms, and future
feasible countermeasures are discussed in Section 6.

2.4. Taxonomy

To attain a comprehensive understanding of the research status per-
taining to DL-based methodologies in the domain of liver cancer HIA,
we present a taxonomy elucidating existing approaches. Our taxon-
omy meticulously organizes DL-based methods, focusing on two main
clinical applications: cancer diagnosis and prognosis. As delineated in
Fig. 3, we methodically categorize these existing approaches into two
principal categories, namely classification and localization, aligning
with their specific tasks within diagnostic models. Furthermore, we
subdivide them into supervised learning approaches and weakly super-
vised learning methods. Among deep survival learning for prognosis,
we provide an in-depth examination of survival models implemented by
DL-based methods, specifically tailored for the prognosis of liver cancer
patients.

3. Datasets and evaluation metrics

This section introduced several mainstream publicly available
datasets and evaluation metrics. The details of these datasets were
presented, encompassing characteristics, sources, corresponding tasks,
and other pertinent information. Subsequently, the evaluation metrics
relevant to specific applications, such as diagnostic and prognostic
models, were introduced.
4

Fig. 3. The taxonomy of representative DL-based methods applied in liver cancer HIA.

3.1. Datasets

To continuously enhance the performance of DL models, the im-
perative prerequisite is access to a substantial dataset that encom-
passes a significant number of meticulously annotated images. The
collection of digitalized histopathology images typically involves med-
ical institutions, which frequently include medical centers affiliated
with educational institutions or specialized hospitals. The annotation
of these images, whether at the image-level, patch-level, or pixel-
level, is meticulously carried out by expert pathologists. In the context
of classification tasks, both patch-level and image-level annotations
are frequently utilized. Typically, professional pathologists delineate
abnormal regions, and subsequently, patches are extracted from the
corresponding tissue regions, such as cancerous or normal regions,
to provide patch-level annotations. Image-level annotations can be
regarded as weak labels since only the category of the histopathology
images is provided, without specifying the type of the particular tis-
sue regions. For localization tasks, accurate ground-truth binary pixel
masks, referred to as pixel-level annotations, are typically necessary.
Similarly, patches are cropped from the corresponding tissue regions
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Table 1
Summary of publicly available datasets in liver cancer histopathology.

Dataset/Year Cancer
subtype

Stain Dimension Image format Task Annotation types Description

TCGA-LIHC HCC H&E Varying SVS Classification Image-level (1) Presenting tissue WSIs annotated with the
corresponding category (cancerous or normal) from 377
cases and diagnostic WSIs from 365 cases, but lacking
detailed pixel-level annotations for segmentation tasks;
(2) Providing clinical, biological, survival, and
pathological data, benefiting for researches on survival
analysis and others.

PAIP 2019 HCC H&E Varying SVS Segmentation Pixel-level (1) Encompassing 100 WSIs (50 training slides, 40 testing
slides, and 10 validating slides); (2) Furnishing
ground-truth binary pixel masks and delineating tissue
regions into the two categories: the comprehensive tumor
area and the viable tumor area by distinct color lines.

KMC 2021 HCC H&E 1920 × 1440 – Classification and
segmentation

– Providing 257 WSIs with four sub-types (70 WSIs
belonging to sub-type 0, 80 WSIs belonging to sub-type 1,
83 WSIs belonging to sub-type 2, and 24 WSIs belonging
to sub-type 3) and 80 WSIs with annotated nuclei.
to facilitate training a DL model. In this section, we present a com-
prehensive summary of three liver cancer histopathology datasets that
are accessible to the public. Furthermore, an exhaustive account of the
specific details of these datasets is elaborated upon subsequently, as
presented in Table 1 for enhanced clarity and reference.

The TCGA-LIHC (Erickson et al., 2016) stands as a pivotal milestone
as the initial publicly accessible dataset for HCC histopathological
images. This dataset is the project of TCGA from the National Cancer
Institute Genomic Data Commons. Comprising a comprehensive compi-
lation of tissue slide images sourced from 377 patients and diagnostic
slide images sourced from 365 patients, TCGA-LIHC offers image-
level annotations elucidating the categorization of WSIs. However, it
is noteworthy that the dataset does not furnish detailed segmentation
annotations specifically delineating liver cancer tissue regions. Be-
yond WSIs, this dataset also provides clinical, biological, survival, and
pathological data. This multifaceted dataset thereby significantly con-
tributes to the advancement of prognostic models and related research
endeavors.

The PAIP 2019 (Kim et al., 2021), a constituent of the MICCAI 2019
Grand Challenge for Pathology, comprising 100 WSIs. This dataset
elaborately divides a training set featuring 50 slides, a testing set
comprising 40 slides, and a validation set including 10 slides. Each
WSI is stained using the H&E and subsequently subjected to scanning
through the Aperio AT2 scanner at a magnification factor of × 20.
A distinctive hallmark of the PAIP dataset is its provision of pixel-
level annotations implemented by expert pathologists affiliated with
the Seoul National University Hospital. These annotations discerningly
designate tissue regions within WSIs. Moreover, the dataset delineates
tissue regions into two distinct categories: the comprehensive tumor
area and the viable tumor area, which are thoughtfully demarcated
using distinct color lines.

The KMC dataset (Aatresh et al., 2021; Lal et al., 2021) encompasses
257 HCC original H&E stained WSIs. Each WSI within this dataset
boasts dimensions of 1920 × 1440 pixels, and they are sourced from
distinct patients. The dataset categorizes these WSIs into four distinct
sub-types, with each sub-type exhibiting varying quantities. Specifi-
cally, sub-type 0 comprises 70 WSIs, sub-type 1 encompasses 80 WSIs,
sub-type 2 includes 83 WSIs, and sub-type 3 contains 24 WSIs. Further-
more, there are 80 liver cancer H&E stained histopathological images
with annotated nuclei within each WSI. These images are acquired
at the same microscopic zoom level (40x) using an Olympus scanner.
These images were collected and annotated by a clinical pathologist
from Kasturba Medical College (KMC), Mangalore, Manipal Academy
5

of Higher Education (MAHE), Manipal, Karnataka, India.
Table 2
Summary of commonly-used evaluation metrics in liver cancer histopathology.

Task Metric Definition

Classification

Accuracy (Acc) 𝑇𝑃+𝑇𝑁
𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁

Precision (Pr) 𝑇𝑃
𝐹𝑃+𝑇𝑃

Recall (Re) = Sensitivity (Sens) 𝑇𝑃
𝐹𝑁+𝑇𝑃

Specificity (Spec) 𝑇𝑁
𝐹𝑃+𝑇𝑁

F1-score (F1) 2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

= 2𝑇𝑃
𝐹𝑃+𝐹𝑁+2𝑇𝑃

ROC curve True Positive Rate (TPR),
False Positive Rate (FPR)

AUC Area under the ROC curve

Localization
Jaccard index (Jaccard or IOU) 𝐴∩𝐵

𝐴∪𝐵
= 𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁

Dice score (Dice) 2 |𝐴∩𝐵|
|𝐴|+|𝐵|

= 2𝑇𝑃
𝐹𝑃+𝐹𝑁+2𝑇𝑃

3.2. Evaluation metrics

Various evaluation metrics serve as quantitative measures to assess
the performance of DL models for the specific task. Taking the binary
classification task as an example, the terminology includes True Pos-
itive (TP), which signifies accurately predicted cancerous conditions,
True Negative (TN), denoting accurately predicted normal conditions,
False Positive (FP), representing inaccurately predicted cancerous con-
ditions, and False Negative (FN), indicating inaccurately predicted
normal conditions. Notably, Accuracy (Acc) stands as the primary
metric for quantifying the proportion of correct predictions across all
samples in classification models. For localization models, the widely
adopted metric is the Jaccard index, also known as the Intersection
Over Union (IOU), which quantifies the degree of overlap between
predicted images and the ground-truth labels. In contrast, for prog-
nostic models, the Concordance Index (C-Index) serves as a prevalent
evaluation metric. The C-Index assesses the alignment between the
predicted ranks and the actual observed survival outcomes (Steck et al.,
2007; Blanche et al., 2019), where a value of 0.5 suggests complete
randomness and a value of 1 signifies a perfect prediction. For a
comprehensive overview of evaluation metrics commonly employed
in the assessment of DL models within the domain of liver cancer
histopathology, please refer to Table 2.

4. Deep learning for histopathology diagnosis

The objective of this section is to furnish a comprehensive and me-
thodical overview of DL-based methodologies employed in the diagno-
sis of liver cancer histopathology. As highlighted in Section 2.3, numer-

ous challenges significantly impede liver cancer HIA. To address these
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challenges, several studies have initiated efforts to adopt diverse ap-
proaches, including pre-processing (Section 4.1) and learning-efficient
methods. Concerning learning-efficient methods, these methodologies
can be categorized into two distinct groups: classification (Section 4.2)
and localization (Section 4.3), aligning with the specific nature of
the addressed problem. Subsequent sections delve into the substantive
contributions and innovations inherent in these DL-based approaches.
Moreover, we underscore their performance in the context of specific
applications on either public datasets or private datasets. Towards the
culmination of this section, we briefly review these methodologies and
discuss their inherent limitations. More details are presented as follows.

4.1. Pre-processing

Due to the predominant challenges primarily associated with train-
ing data, numerous studies have inclined towards employing pre-
processing methods to augment the quality of these data, thereby
bolstering the generalization capabilities of DL models. When consid-
ering the adoption of pre-processing approaches, key methods include
patch extraction, stain normalization, and data augmentation.

Patch extraction for addressing oversized histopathological
images. A gigapixel histopathological image is unlikely directly fed
into a DL-based model; for this reason, the patches with fixed size
(e.g., 256 × 256 pixels) cropped from WSIs may be more appropriate.
The simplest approach is to use the sliding window with the fixed
size and step to crop WSIs into non-overlapping (Wang et al., 2021a)
or overlapping patches (Chen et al., 2021). Alternatively, an effective
approach involves the utilization of the OpenSlide library (Goode et al.,
2013), a tool that facilitates the processing of WSIs for patch extraction.
Furthermore, partial studies have embraced Otsu’s method (Otsu, 1979)
to segregate tissue regions and filter out extraneous blank backgrounds
before patch cropping, thereby significantly curbing computational
cost.

Stain normalization for addressing color inconsistency. Ad-
dressing the pervasive challenge of color heterogeneity intrinsic to
histopathological images due to variations in staining workflows across
multiple institutions (BenTaieb and Hamarneh, 2017), an effective
approach is to use Histogram Equalization Algorithm (HEA), a strat-
egy consistently applied across several studies. Notably, Feng et al.
(2021) introduced an innovative approach that recognizes the impact of
white backgrounds on tissue region normalization with respect to color
characteristics. To circumvent this interaction, they proposed a partial
color normalization technique grounded in linear transformations, with
a specialized focus on tissue regions by a specific mask.

Data augmentation for addressing insufficient training data. In
the domain of histopathology, augmenting the training dataset with
diverse images becomes pivotal in enabling DL models to discern
known and underlying morphological features, consequently bolster-
ing their generalization and robustness (Campanella et al., 2019).
However, the paucity of training data has stymied the development
of universally applicable DL models in the context of liver cancer
histopathology. To mitigate this challenge, data augmentation tech-
niques have emerged as an approach, widely adopted across many stud-
ies. Typical data augmentation methods encompass geometric trans-
formation (e.g., flips, rotations, and translations) and color transfor-
mation (e.g., color space translation, color augmentation, and blur).
These methods, while not entirely eliminating this challenge, serve to
partially enhance the generalization of DL models.

4.2. Classification

When addressing classification problems, DL models are directed
towards the discernment of target categories within histopathological
images, notably distinguishing between characteristics indicative of
benign and malignant samples. The exhaustive setting of the clas-
sification problem is provided in Section 2.1. As shown in Fig. 4,
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we identify two main learning paradigms behind these DL models:
supervised learning (Section 4.2.1) and weakly supervised learning
(Section 4.2.2). Within the ambit of the first paradigm, a trifecta of
core learning methodologies has been devised to effectively tackle the
specific challenges inherent to liver cancer histopathology diagnosis,
including basic CNNs, transfer learning-based networks, and attention-
based networks. Finally, the second paradigm primarily addresses the
constraints arising from a dearth of high-quality labeled images. Within
this paradigm, DL models are closely related to Multiple Instance
Learning (MIL) approaches (Dietterich et al., 1997). An overview of
representative DL models, including supervised learning and weakly
supervised learning approaches, is provided in Table 3.

4.2.1. Supervised learning
Basic CNNs. In recent years, DL models, particularly CNNs, have

been widely applied in the domain of liver cancer HIA. A common
practice involves the segmentation of histopathological images into
numerous patches, with the model rendering predictions for each patch
to classify them into their respective target categories, thus establishing
a patch-level classification. For example, Li et al. (2017) combined the
basic CNN with 12 fully connected layers, enabling the extraction of
multi-form feature vectors. Subsequently, they integrated the Extreme
Learning Machine (ELM) to effectively grade individual HCC nuclei into
three distinct malignant degrees.

As the field has witnessed the emergence of more advanced and
deeper models, such as VGG (Simonyan and Zisserman, 2014), Incep-
tion (Szegedy et al., 2015), and ResNet (He et al., 2016), researchers
have progressively adapted these models to the realm of liver cancer
HIA. For example, Kiani et al. (2020) harnessed DenseNet (Huang et al.,
2017) to classify image patches from tumor regions as either HCC or
ICC within WSIs. They then aggregated individual patch-level proba-
bilities to formulate slide-level outcomes. Employing Class Activation
Maps (CAMs) (Zhou et al., 2016), the heatmaps were generated to
enhance the interpretability of DL models by highlighting the tissue
regions closely associated with the diagnostic outcomes. Addition-
ally, Liao et al. (2020) introduced residual conception into their DL
model to distinguish normal or HCC image patches within WSIs and
Tissue Microarrays (TMAs). Subsequently, they utilized two methods to
derive slide-level results, including the average of each patch from the
corresponding WSI and the summary of the percentage of classified pos-
itive patches from the corresponding WSI (≥0.5). To further discover
the correlation between outcomes obtained by their model at varying
magnifications, they used the model trained on patches at both 5× and
20× magnifications. Experimental results revealed a robust correlation
between outcomes across these two magnifications, with the model
achieving an exceptionally high level of performance (e.g., patch-level
AUC = 0.975 at 20× magnification). These studies have indicated that
these advanced models and groundbreaking structure designs have
stronger visual feature representation capabilities and can be better
applied to liver cancer histopathological diagnosis.

Tumor mutation prediction constitutes a pivotal application within
the realm of liver cancer diagnosis, offering profound insights into the
intricate landscape of genomic mutation types that explain cancer de-
velopment and progression. For example, Chen et al. (2020b) employed
Incption-V3, pre-trained on ImageNet and fine-tuned on TCGA-LIHC,
to predict HCC gene mutations, effectively distinguishing patches and
WSIs into wild-type or mutated states. This model was trained to
discern mutations within the ten most frequently encountered genes in
HCC. Remarkably, their findings unveiled the significant identification
of four mutated genes (CTNNB1, FMN2, TP53, and ZFX4) at the slide-
level. Similarly, Liao et al. (2020) proposed a CNN with the residual
structure to predict genomic mutation on both WSIs and TMAs. Their
model was also trained on ten mutated genes, yielding experimen-
tal results that underscored its impressive performance in predicting
mutated genes associated with HCC. Notably, this model expended

less memory and time, alongside heightened generalization capabilities
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Fig. 4. Overall frameworks for liver cancer histopathology classification models. The WSI is cropped into abundant patches before the inference process. (a) represents a supervised
learning paradigm, where image patches, along with their corresponding labels, are input into a CNN for feature extraction. Subsequently, predictions are made for each individual
patch. The final image-level result is obtained through aggregation approaches. (b) illustrates the weakly supervised learning principle, with MIL-based models being the typical
approach. In this context, the cropped image patches, lacking corresponding labels, form instances that are fed into the MIL-based model. This model can autonomously predict
whether each instance (patch) and bag (image) is associated with positive or negative conditions.
when contrasted with Inception-V3. Particularly noteworthy was the
model’s proficiency in predicting CTNNB1 mutations, achieving an
impressive AUC of 0.903 at the slide-level.

In addition to the prediction of genomic mutation types directly
from HCC histopathological images, Zhang et al. (2019) embarked on
an exploration aimed at predicting Tumor Mutational Burden (TMB)
from these very images. They proposed the CNN model to prognosticate
TMB levels, classifying them into high-level or low-level groups. It is
imperative to highlight their noteworthy observation that they encoun-
tered a significant issue concerning over-fitting when applying several
well-established DL models, including but not limited to AlexNet, VGG,
and ResNet. The main reason behind this issue lies in the fact that these
networks are predominantly designed for the processing of natural
images, boasting larger receptive fields optimized for capturing global
features. However, there is a need to consider the extraction of detailed
local features (e.g., cellular structure) of histopathological images. In
response to this need, they developed a novel CNN model comprising
four pairs of convolution layer and max pooling layer followed by a
fully connected layer with 256 neurons. Their meticulous experimen-
tation revealed a pivotal insight: the size of the receptive field has a
profound impact on the performance of DL models in the classification
of TMB. Consequently, they achieved their most promising results when
utilizing a 48 × 48 size for the receptive field, while the kernel size was
configured at 5 × 5 for the initial convolutional layer and 3 × 3 for the
subsequent three convolutional layers within their model.

Transfer learning-based networks. The dearth of a large-scale
dataset poses a formidable challenge in the field of liver cancer HIA,
prompting the exploration of an alternative approach involving the
utilization of the pre-trained network. The objective revolves around
leveraging knowledge acquired from a source domain and applying it
to a target domain. Typically, the model is pre-trained on an extensive
dataset such as ImageNet (Krizhevsky et al., 2017), with the resulting
trained weights of all layers serving as the initialization for the target
task.

In the context of liver cancer HIA, a similar strategy has been
adopted across most studies. This strategy involves the utilization of a
model pre-trained on ImageNet and subsequently applying it to the tar-
get dataset, such as TCGA-LIHC. For example, Chen et al. (2020b) used
pre-trained Inception-V3 to implement binary-classification (normal
verse tumor) and HCC multi-classification (well verse moderate verse
poor), achieving promising performance. Another noteworthy study,
proposed by Dong et al. (2022), delved into the fusion of several pop-
ular pre-trained models, including ResNet-50, VGG-16, DenseNet-201,
and InceptionResNet-V2, to enhance the classification performance
for multi-differentiated liver cancer. The study involved a series of
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carefully designed experiments encompassing the selection of fusion
strategies and the choice of efficient classifiers. Experimental results
indicated that the fusion of ResNet-50, VGG-16, and DenseNet-201
has the best generalization performance, particularly when integrated
with an attention mechanism and a Stacking-based ensemble learning
classifier, which outperformed other classifiers with an impressive Acc
of 0.7246. However, it is essential to note that the generalization of this
fusion model exhibited a slight decrement when applied to unknown
data, potentially attributable to the limited training samples.

Attention-based networks. Attention mechanisms have proven
to be highly effective in enhancing model performance by enabling
the extraction of relevant feature information, particularly for the
identification of tumor sub-types. For instance, inspired by Breast-
Net (Toğaçar et al., 2020), Aatresh et al. (2021) integrated the Con-
volutional Block Attention Module (CBAM) (Woo et al., 2018) and
introduced a novel residual block into their model to capture the
relevant features (e.g., tissue regions) and to filter irrelevant informa-
tion (e.g., background). Moreover, they leveraged the Atrous Spatial
Pyramid Pooling (ASPP) block (Chen et al., 2017a) with depth-wise
separable convolutions (Howard et al., 2017), along with the hyper-
column technique, to effectively extract multi-scale features. The result-
ing model, named ‘‘liverNet’’, demonstrated remarkable performance,
achieving an average Acc of 0.9772 on the TCGA-LIHC dataset for the
classification of four categories of HCC image patches (normal, low sub-
type HCC tumor, medium sub-type HCC tumor, and high sub-type HCC
tumor), while expending a handful of calculation parameters.

To ascertain the impact of attention mechanisms on the generaliza-
tion of DL models, Chen et al. (2022a) conducted a comparative study.
They evaluated several popular DL models used for distinguishing
between three differentially graded liver cancer histopathological im-
ages, including VGG-16, ResNet-50, ResNet-50_CBAM, SKNet (Li et al.,
2019), and SENet (Hu et al., 2018) - the selected network in their study.
Experimental results demonstrated that VGG-16 showed the poorest
performance due to its relatively simple structure, which struggled to
capture complex histological features. In contrast, ResNet-50, with its
deeper architecture, outperformed VGG-16. Furthermore, the addition
of CBAM to ResNet-50 yielded a slight improvement, particularly in
the prediction of moderately differentiated images. SENet and SKNet
also demonstrated remarkable performance, with SENet achieving the
highest overall classification performance (Acc = 0.9527), particularly
excelling in the prediction of poorly differentiated images. These results
indicated that SENet is particularly well-suited for learning complex
histology features and extracting fine-grained information.
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Table 3
Overview of deep learning-based classification models for liver cancer histopathology.

Type Reference Application Pre-processing Dataset Result Methods, contributions, and limitations

Supervised learning

Li et al.
(2017)

HCC nuclei grading Patch with an
individual nucleus
extraction using
Center-proliferation
Segmentation (CPS)

Private dataset: 127
WSIs

Acc = 0.967 (1) Proposing a CNN with 12 fully connected
layers to extract multi-form feature vectors
and utilizing Extreme Learning Machine
(ELM) as the classifier; (2) Employing a novel
up-sample method contained in
backpropagation algorithm; (3) But this study
is not ideal for the segmentation of
overlapping or adhesive cell nucleus.

Zhang et al.
(2019)

HCC TMB prediction Patch extraction using
the sliding window +
Data augmentation by
flexibly adjusting the
step size

TCGA-LIHC: 380 WSIs
from 362 patients

Patch-level: Acc =
0.9486, Auc = 0.9488;
patient-level: Acc =
0.9971

(1) Proposing a CNN with modified receptive
fields; (2) Only predicting the classification of
TMB patients, rather than the TMB score.

Liao et al.
(2020)

Binary classification
(benign and HCC) and
mutation prediction

Patch extraction using
OpenSlide library +
Data augmentation
using color
transformation

TCGA-LIHC: 402 WSIs
with 89 matched ones
of adjacent normal
tissue; private dataset:
455 HCC TMAs with
265 matched normal
tissues

TCGA-LIHC: patch-level
AUC = 0.9419,
image-level AUC =
0.9937 (binary
classification);
patch-level AUC =
0.7172, image-level
AUC = 0.8122
(mutation prediction)

(1) Developing a CNN with the residual
structure to predict WSIs and TMAs; (2) But
the predicted results of TMAs under two
magnifications were significantly different. (3)
The prediction of somatic mutation needs to
be further improved.

Chen et al.
(2020b)

Binary classification
(benign and HCC) +
HCC multi-classification
(well, moderate, and
poor tumor
differentiation) +
mutation prediction

Patch extraction TCGA-LIHC: 491 WSIs
(402 normal and 89
HCC slides), 383 WSIs
of HCC with available
histopathological grade
(55 well, 187 moderate,
and 141 poor slides),
and 387 WSIs of HCC
with corresponded gene
mutation information;
private dataset: 67 HCC
and 34 normal WSIs

Varying (1) Utilizing the pre-trained Inception-V3 to
deal with binary classification, multiclass
classification, and gene mutation prediction;
(2) Requiring further validating their DL
model on other large-scale datasets.

Kiani et al.
(2020)

Binary classification
(HCC and ICC)

Patch extraction by the
reference GI pathologist

TCGA-LIHC; TCGA-CC;
private dataset: 40 HCC
and 40 ICC WSIs

Validation set: Acc =
0.885; independent test
set: Acc = 0.842

(1) Employing DenseNet to assist pathologists
in the real clinical setting; (2) Using Class
Activation Maps (CAMs) to highlight the
tissue regions closely associated with the
diagnostic outcomes and improve the
interpretability of the DL model; (3) Only
focusing on the classification of HCC and ICC,
and it is imperative to collect the data of
other subtypes, thereby further enhancing
clinical application.

Lin et al.
(2021)

Binary classification
(HCC and normal)

Patch extraction Private dataset: 29
WSIs

Acc = 0.9137, Sens =
0.9216, Spec = 0.9057

(1) Adopting Inception-V1 to classify HCC
histopathology images; (2) Conducting the
inverse power law function-based model to
estimate the minimum number of annotated
training images for satisfying the ideal
performance of DL models; (3) Seeking
further investigation into more efficient DL
models and labeling methods, with an
emphasis on scaling datasets.

Aatresh et al.
(2021)

HCC multi-classification
(normal, low sub-type,
medium sub-type, high
sub-type tumor)

Patch extraction + Data
augmentation using
geometric
transformation + Image
normalization

TCGA-LIHC: 141 WSIs
(60 WSIs with sub-type
0, 50 WSIs with
sub-type 1, and 31
WSIs with sub-type 2);
KMC

TCGA-LIHC: Prec, Re,
F1, Acc = 0.9772, IOU
= 0.9561; KMC: Prec,
Re, F1, Acc = 0.9093,
IOU = 0.836

(1) Proposing a novel architecture, called
LiverNet, integrating with CNAM and ASPP;
(2) Providing a novel publicly dataset, called
KMC; (3) Seeking further validation of their
DL model on additional large-scale datasets.

Dong et al.
(2022)

Liver cancer
multi-classification
(poorly-differentiated,
moderately-
differentiated, and
well-differentiated
tumor)

Stain normalization
using Adaptive
Histogram Equalization
(AHE) algorithm +
Gaussian filtering using
to mitigate noise +
Data augmentation
using geometric
transformation

Private dataset: 73
WSIs (24 poorly
differentiated, 27
moderately
differentiated, and 22
well differentiated
WSIs)

Acc = 0.7246 (1) Fusing several pre-trained models
(ResNet-50, VGG-16, and DenseNet-201) with
both channel attention and spatial attention
(2) Employing the Stacking-based ensemble
learning classifier; (3) This DL model
showcased the slightly poor performance in
the test set.

(continued on next page)
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Table 3 (continued).
Weakly supervised learning

Chen et al.
(2022a)

Liver cancer
multi-classification
(poorly-differentiated,
moderately-
differentiated, and
well-differentiated
tumor)

Data augmentation
using geometric
transformation

Private dataset: 74
WSIs (24 poorly
differentiated WSIs, 28
moderately
differentiated WSIs, and
22 highly differentiated
WSIs)

VGG-16: Acc = 0.7695;
ReNet-50: Acc =
0.9422; ResNet_CBAM:
Acc = 0.9473; SENet:
Acc = 0.9527; SKNet:
Acc = 0.9515

(1) Comparing with several popular CNNs
(VGG-16, ResNet-50, ResNet_CBAM, SKNet,
and SENet); (2) The dataset used in this study
is small and single, requiring the further
validation on other large-scale datasets.

Sun et al.
(2019)

Binary classification
(HCC and normal)

Color transformation +
Tissue extraction using
Otsu’s method + Color
normalization using a
Histogram Equalization
Algorithm (HEA) +
Patch extraction

TCGA-LIHC: 462 WSIs
(79 normal WSIs and
383 HCC WSIs)

Pr = 1, Re and AUC
over 0.95

(1) Employing the pre-trained ResNet-50 and
an MLP classifier; (2) Applying the weakly
supervised learning training paradigm to
alleviate the insufficient training data; (3)
There exists the issue of data imbalance due
to the lack of normal WSIs and the prediction
of normal images is relatively poor.

Tan et al.
(2021)

ICC subtype
classification
(peripheral small duct
type and perihilar large
duct type)

Patch extraction Private dataset: 235
WSIs from 119 patients

Acc = 0.7006 (1) Proposing a novel label smoothing using
EfficientNet for the hidden class detection;
(2) Utilizing MIL framework encompassing
VGG-16 integrating with an MLP classifier for
image-level classification; (3) The
performance of this DL model should be
further enhanced by incorporating gene
mutation information without relying on
manual selection based on the gene mutation
data.

Zeng et al.
(2022)

HCC immune and
inflammatory gene
signatures prediction

Tissue extraction +
Patch extraction +
Stain conversion +
Color normalization +
Data augmentation
using geometric
transformation

TCGA-LIHC: 349 slides
from 336 tumors

Varying (1) Applying the Ward2 algorithm and
Euclidean distance to conduct hierarchical
clustering of samples. (2) Comparing with
three DL-based approaches (the patch-based
CNN employing ShuffleNet, the classical MIL,
and CLAM); (3) Requiring further improving
the performance of their DL model.

Tan et al.
(2023)

ICC subtype
classification
(peripheral small duct
type and perihilar large
duct type)

Patch extraction with
three magnifications +
Data augmentation
using geometric
transformation

Private dataset: 332
WSIs from 168 patients

Acc = 0.7715 (under
tumor image patches)

(1) Introducing a multi-scale CNN built upon
a Siamese contrastive learning network,
featuring a VGG-16 backbone and a
projection head. (2) Employing multi-scale
attention for the integration of the
meaningful features based on the MIL
framework; (3) Only concentrating solely on
the fusion of features from two scales.
4.2.2. Weakly supervised learning
Considering the deficiency of labeled histopathological images,

the weakly supervised learning algorithm emerges as a promising
direction. While it is relatively easy to acquire coarse-grained labels
for entire liver cancer histopathology images, obtaining fine-grained
(patch/pixel-level) annotations is exceedingly uncommon and expen-
sive. This constraint hampers the improvement of the performance of
DL models. Weakly supervised learning offers a solution to this issue
by alleviating the need for fine-grained annotations (Xu et al., 2014).

Herein, MIL is the main approach of weakly supervised learn-
ing for liver cancer histopathology study and needs only a set of
weakly labeled data. Specifically, MIL operates by utilizing coarse
image-level histopathological images as ‘‘bags’’, wherein the model
automatically predicts individual unknown patches as either positive
instances (e.g., cancerous patches) or negative instances (e.g., normal
patches). These instance-level predictions can be aggregated to form
either positive bag-level outcomes, containing at least one positive
instance, or negative bag-level outcomes, comprising exclusively neg-
ative instances, as shown in Fig. 4(b). For instance, Sun et al. (2019)
first utilized coarse image-level annotated images to train ResNet-50,
pre-trained on ImageNet, to generate feature vectors for each patch.
These feature vectors then were fed into the MIL model, responsible for
selecting the highest-scoring positive instances and the lowest-scoring
negative instances. In this specific case, a total of 100 highest-scoring
positive instances and 100 negative instances were chosen and utilized
as input for a Multilayer Perceptron (MLP). The MLP was responsible
for generating binary bag-level outcomes, classifying the images as
either cancerous or normal.
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In typical MIL scenarios, performance is often limited. Notably,
Clustering-constrained Attention Multiple Instance Learning (CLAM)
(Lu et al., 2021) is an efficient algorithm that incorporates an attention
mechanism into the MIL framework, thereby further improving the gen-
eralization capabilities of DL models. For instance, Zeng et al. (2022)
aimed to investigate the effectiveness of the basic patch-based CNN
model based on ShuffleNet, the classical MIL, and CLAM for predicting
six immune gene signatures from HCC histopathological images. In
their approach, the authors first used the Ward2 algorithm (Murtagh
and Legendre, 2014) and Euclidean distance to perform hierarchical
clustering of samples, resulting in three distinct sample clusters: high,
median, and low, for each gene signature. These clusters were sub-
sequently labeled as either ‘‘cluster high’’ or ‘‘cluster median/low’’ to
train three DL models. Among the three approaches, CLAM exhibited
the most favorable performance. This was attributed to two key ad-
vantages of CLAM: firstly, the integrated attention mechanism allowed
the model to focus on diagnostic tissue regions more effectively, par-
ticularly through adaptive weighting for each patch; secondly, CLAM
generated visualized heatmaps that enhanced model interpretation,
aiding pathologists in assessing the entire histopathological image.

In a different approach proposed by Tan et al. (2021), the authors
optimized the generalization of MIL-based models for classifying two
sub-types (small duct type and large duct type) of ICC through a two-
stage approach. In the first stage, they introduced an additional class,
referred to as the ‘‘hidden class’’, based on the hypothesis that patches
from both sub-types shared similar features. EfficientNet (Tan and Le,
2019), pre-trained on ImageNet, was utilized to iteratively refine per-
patch labels and assign patches to three reasonable classes, including

the hidden class. In the second stage, the study aimed to validate the
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performance of the patch filtering approach introduced in the first
stage. This involved discarding patches from the hidden class to enable
the subsequent model to learn more discriminative features. The MIL
framework in this scenario employed pre-trained VGG-16 as the feature
extractor, with an MLP serving as the classifier to implement binary
image-level classification.

4.3. Localization

In localization networks, the primary objective is to pinpoint lesion
regions, such as cancerous regions, often accomplished through the
utilization of heatmaps or segmentation techniques. A detailed setting
of localization problems is provided in Section 2.1. Among the domain
of liver cancer histopathology, existing localization approaches can be
categorized into several paradigms, including multi-scale networks, the
multi-task ensemble learning-based network, the three-stage cascaded
network, and multi-class segmentation networks within the supervised
learning paradigm. In the context of weakly supervised learning, rep-
resentative approaches encompass the multi-scale attention network
and the weak complementary label-learning network. The systematic
discussion of these methods is presented in the following sections, and
an overview of representative DL models is presented in Table 4.

4.3.1. Supervised learning
Multi-scale networks. At a specific magnification, individual

atches exhibit constrained histological features, and the extensive con-
extual information is often compromised due to successive feature map
eductions. To mitigate this limitation, multi-scale networks offer an
ffective approach by amalgamating both local and global information,
hereby enhancing the efficacy of DL models. As shown in Fig. 5, multi-
cale approaches reported in liver cancer histopathology can be further
ubcategorized into two distinct implementations: multi-magnification
etworks and multi-resolution networks, each with its unique strategies
or addressing this problem.
Multi-magnification networks were designed to extract features from

images at different magnifications, effectively merging local and global
features, as illustrated in Fig. 5(a2). In this approach, image patches
maintain the same size while exhibiting distinct spatial structures.
For example, a single-scale CNN captures features from patches at
the specific magnification, whereas the multi-scale CNN, as proposed
by Huang et al. (2019), employed two parallel CNNs to extract fea-
tures from patches in WSIs at both 5× and 20× magnification, with
fusing the features from these two magnifications to produce the final
outcome. Similarly, Feng et al. (2021) developed a seven-level Gaus-
sian pyramid multi-scale model for HCC tumor region segmentation,
using U-Net (Ronneberger et al., 2015) as the backbone. Each level’s
histopathological image size is reduced to one-fourth of the preceding
level, with the bottom level representing the original 20× magnifica-
tion image without color normalization. Challenges emerged during
patch stitching, including seams and artifacts at patch boundaries,
which were addressed by refining the weight map calculation using an
overlapped patch extraction and assembling method proposed by Cui
et al. (2019). A voting mechanism was employed to combine the multi-
scale features, and the segmentation results at each level were mapped
back to the original image size before fusion. Experimental results
on the PAIP 2019 dataset demonstrated that their model achieved
state-of-the-art performance, with a Jacard score of 0.7964.

However, the typical multi-scale CNN, as demonstrated by Huang
et al. (2019), encounters a spatial alignment challenge during in-
tegration. This issue arises because features extracted from various
magnifications (e.g., 2.5×, 5×, 10×, or 20×) are not co-located on
the original images. To address this limitation, Yang et al. (2022)
developed a feature-aligned multi-scale CNN. Their model also em-
ployed two parallel CNNs, similar to VGG-16, with one model focusing
on capturing micro-level cell details and the other on macro-level
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tissue structure features. To mitigate spatial structure disruption dur-
ing integration, they introduce the feature map spatially-constrained
integration block, which consists of two main operations: central crop-
ping and feature map resizing. Central cropping was employed to
select the region on low-magnification patches corresponding to the
region on high-magnification patches. Feature map resizing utilized
bilinear interpolation to upsample the patches to match the size of
high-magnification feature maps. Additionally, an ASPP block was
incorporated to enable the low-magnification model to extract features
from a broader perspective. Compared to the basic single-scale CNN
and the conventional multi-scale CNN, the proposed model exhibited
superior performance, achieving a sensitivity of 0.96 on images at
20×_5× magnification and an average IOU of 0.89 on images at 5×_2.5×
magnification.

Multi-resolution networks represent another efficient approach, focus-
ing on the extraction of features from patches at different resolutions
obtained from WSIs. In this scenario, patches exhibit varying res-
olutions while maintaining identical spatial structures, enabling the
capture of both local and global features through the receptive fields
of CNNs. For instance, Yan et al. (2021) proposed the Hierarchical
Attention Guided (HAG) framework. Their approach began with pre-
training three distinct input-resolution segmentation networks, utilizing
the Linknet (Chaurasia and Culurciello, 2017) architecture with a
ResNet-18 backbone, resembling a U-Net model. Different from the
straightforward approach of directly upsampling images to match the
size of the original image for multi-scale feature fusion, the key in-
novation in this algorithm lies in the creation of sparse-constrained
hierarchical attention maps generated by the macro branch - responsi-
ble for global information extraction. These attention maps guided the
other two branches in selecting fine-grained local tissue features. The
quadtree method (Finkel and Bentley, 1974) was then used in the meso
and the micro branches to further pinpoint the significant sub-regions.
The final prediction map was obtained through hierarchical fusion.
What is noteworthiness is that the images at the macro resolution
were directly downsampled from the original image to ensure global
information extraction. In contrast, the images of the meso and the
micro resolutions were cropped into the patches to facilitate the local
information extraction. This model effectively reduced additional com-
putational costs, accelerating inference without sacrificing accuracy,
and the authors demonstrated its promising performance on an HCC
dataset.

The multi-task ensemble learning-based network. As shown in
Fig. 5(b), Wang et al. (2021a) proposed a three-branch CNN model
that leverages multi-task learning and ensemble learning techniques to
address both segmentation and classification tasks. This model adopted
an encoder–decoder architecture, with SE-ResNet-101 (Hu et al., 2018)
serving as the chosen encoder. The model features three distinct de-
coders: the tumor segmentation branch concentrates on the segmen-
tation of tumor regions of HCC WSIs but ignores normal regions;
the whole tissue region segmentation branch takes both tumor and
normal regions into account to reduce the number of false positives; the
classification branch undertakes an auxiliary binary classification task.
All three decoders share the same encoder, with the first two decoders
sharing five decoding layers. Additionally, they applied the deep super-
vision strategy (Xie and Tu, 2015) to enhance the representation ability
of their model. In their ensemble strategy, they respectively embedded
Selective Kernel Modules (SKM) from SKNet and Spatial and Channel-
wise Squeeze-and-Excitation Modules (scSEMs) (Roy et al., 2018) into
their base model and trained these two models separately. They trained
these two models independently, computed their respective outcomes,
and averaged them to produce the final segmentation probability map.
The binary segmentation mask was generated using an appropriate
threshold. Ablation experiments demonstrated that this hybrid network
employing the multi-task ensemble learning strategy, significantly im-

proved performance compared to single models. It also outperformed
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Table 4
Overview of deep learning-based localization models for liver cancer histopathology.

Type Reference Application Pre-processing Dataset Result Methods, contributions, and limitations

Supervised learning

Lal et al.
(2021)

HCC nuclei
segmentation

– KMC F1 = 0.8359, Jaccard =
0.7206

(1) Proposing a CNN integrated with attention
mechanism, an encoder and decoder structure;
(2) Providing a novel dataset of annotated liver
nuclei with 80 H&E stained liver cancer
histopathology images; (3) Without
pre-processing, the performance of DL models
may be influenced by the quality of images
like color inconsistency.

Feng et al.
(2021)

HCC
segmentation

Partial color
normalization + Data
augmentation using
geometric
transformation

PAIP 2019 Jaccard = 0.7964 (1) Utilizing U-Net with the Gaussian pyramid
representation and a voting mechanism to fuse
multi-scale feature; (2) Providing a novel
pre-processing method, partial color
normalization for normalizing tissue regions
and disregarding blank regions; (3) Applying
shifted cropping and weighted overlapping to
overcome the discontinuous issue of blocks; (4)
Requiring further validating their DL model on
other large-scale datasets.

Chen et al.
(2021)

MVI detection Patch extraction using
a sliding window

Private dataset: 190
WSIs

None weighted: Re =
0.512, Pr = 0.767, F1
= 0.614; area weighted:
Re = 0.616, Pr =
0.825, F1 = 0.705

(1) Introducing a three-stage cascaded network
that comprises a U-Net for cancer tissue
segmentation, handcrafted features combined
with SE-ResNet for region feature extraction,
and a GCNN for region classification; (2)
However, the training process still needs many
manual operations. (3) False positive
predictions are relatively severe.

Yan et al.
(2021)

HCC
segmentation

Patch extraction using
a sliding window +
Background filtering

Private dataset: 90
WSIs

Acc = 0.888, Dice =
0.903

(1) Adopting Linknet with ResNet-18 as the
backbone and utilizing attention mechanism to
effectively fuse multi-scale features (2) Using
the quadtree-based method to select patches;
(3) But the scales are empirically selected.

Zhu et al.
(2022)

Liver cancer
segmentation

Patch extraction using
a sliding window

Private dataset:
56672 pathology
image patches

Dice = 0.863, IOU =
0.852, Acc = 0.981

(1) Proposing a CNN with an encoder–decoder
structure, where ResNet is used as an encoder;
(2) Adopting dilated convolution module to
extract multi-scale features; (3) Only focusing
on the performance of their DL model in the
in-house dataset and lacking external
validation.

Zhai et al.
(2022)

Liver cancer
segmentation

Patch extraction Private dataset: 95
WSIs

Acc = 0.981, IOU =
0.865, Dice = 0.845

(1) Utilizing U-Net as a backbone; (2)
Introducing a novel global attention mechanism
that merges the pyramid sampling strategy
with the global attention module, aiming to
integrate contextual information and local
detailed features. (3) Lacking the validation of
their DL model on public datasets.

Wang et al.
(2021a)

HCC viable
tumor area
segmentation

Tissue extraction using
Otsu method + Patch
extraction using a
sliding window + Data
augmentation using
geometric
transformation and
color transformation

PAIP 2019 Jaccard = 0.797 (1) Proposing a three-branch CNN building
upon multi-task learning for both segmentation
and classification; (2) Adopting a novel
ensemble learning strategy to integrate their
predictions; (3) Experiencing limitations with a
high model size and prolonged computation
time.

Huang
et al.
(2019)

HCC detection Patch extraction with a
sliding window

Private dataset: 79
WSIs (48
HCC-positive and 31
HCC-negative cases)

mIOU = 0.868, Sens =
0.985

(1) Utilizing two parallel backbones to extract
features under two magnifications, respectively
adopting VGG-16 and Inception V4; (2)
Requiring further improvement by training the
DL model with more tumor morphologies.

Yang et al.
(2022)

HCC detection Patch extraction Private dataset: 46
HCC-positive WSIs
and 1 HCC-negative
WSI

5x_2.5x magnification:
Sens = 0.94, IOU =
0.89

(1) Proposing a multi-magnification CNN for
extracting features under two magnifications;
(2) Proposing a feature map
spatially-constrained block for the integration
of features of low-magnification and
high-magnification image patches on the same
location of WSIs; (3) The false-positive
prediction is slightly high due to the confusion
of analogous tissue morphologies.

(continued on next page)
other baseline models in pixel-wise segmentation of HCC viable regions
11

on the PAIP dataset, achieving the Jaccard score of 0.797.

The three-stage cascaded network. Chen et al. (2021) introduced
a three-stage cascaded network to detect Microvascular Invasion (MVI),
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Table 4 (continued).
Qu et al.
(2023)

HCC multi-class
classification and
segmentation

Patch extraction Private dataset: 495
WSIs from 380
patients

Macro-average,
micro-average AUC =
0.97

(1) Employing ResNet-50 with
squeeze-and-excitation module for multiclass
classification; (2) Requiring further validating
the DL model on other datasets from multiple
institutions.

Liang et al.
(2023)

HCC multi-class
classification and
segmentation

Tissue extraction using
Otsu method + Patch
extraction

TCGA-LIHC: 342
WSIs from 330
patients; PAIP 2019:
100 WSIs; private
dataset: 1182 WSIs
from 83 patients

Private dataset: Acc =
0.948, AUC = 0.998;
TCGA-LIHC: Acc =
0.956, AUC = 0.9984;
2019 PAIP: Acc =
0.941, AUC = 0.9974

(1) Proposing PaSegNet building upon
pre-trained ResNet-50 for multiclass
classification; (2) Providing a novel labeling
method, called mate-annotation dataset; (3)
Requiring further validating the DL model on
other large-scale datasets.

Weakly supervised learning

Diao et al.
(2022)

HCC detection Patch extraction +
Noisy images added
during the generation
of patches + Data
augmentation using
geometric
transformation

TCGA-LIHC: 100
WSIs

Classification: Acc =
0.921, AUC = 0.920,
Sen = 0.933, Spec =
0.906; localization:
Dice = 0.861

(1) Utilizing two distinct VGG-19 networks as
backbones for the extraction of multi-resolution
features; (2) Incorporating an attention
mechanism to efficiently fuse features; (3)
Requiring further advancement by training the
DL model with multiple tumor types.

Hägele
et al.
(2023)

HCC and ICC
semantic
segmentation

Patch extraction + Data
augmentation using
geometric
transformation + Stain
normalization using
color space
augmentations

Private dataset: 262
patients (124 ICC
and 138 HCC)

Case-level: Acc = 0.91 (1) U-Net with a ResNet-18 backbone trained
with a set of weak complementary labels; (2)
Proposing a novel complementary loss; (3)
Seeking further improvement through the
learning of morphologies associated with other
rare subtypes.
Fig. 5. The representative liver cancer histopathology localization models. (a) demonstrates two distinct multi-scale approaches: (a1) employs two different input-resolution image
patches to train two backbones, extracting global and local features through the receptive fields of CNNs. (a2) utilizes two input-magnification image patches of the same size to
train two backbones and subsequently fuses these features. (b) represents a multi-task ensemble learning-based network. In this approach, three branches share the same encoder,
while two decoders share five decoding layers. Additionally, the auxiliary classification branch remains fixed. (c) illustrates the weak complementary label-learning network.
This model takes a set of image patches with weak complementary image-level labels, namely the opposite diagnosis. Note: (a2) and (b) are categorized as supervised learning
approaches, while (a1) and (c) fall under the category of weakly supervised learning approaches.
a common histological feature in HCC. In the first stage, the authors
employed U-Net, with a notable modification being the replacement of
the encoder with SENet, to implement cancer tissue segmentation. It
is worth noting that they combined MVI, cancer tissue, and uncertain
tissue types as diagnosed by pathologists to train this model in this
stage because of the shared characteristics among the tumor cells in
these three tissue types. In the second stage, the connected component
12
algorithm was used to generate tissue instances, which included cancer
tissue, MVI, and normal tissue instances. Each instance was assigned a
specific label. Additionally, the authors manually extracted morpholog-
ical features from these tissue regions, encompassing properties such
as area, perimeter, perimeter-to-radius ratio, and more. SENet was
trained using both the segmentation masks of tissue instances and the
corresponding raw images. The final prediction outcome from SENet
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was concatenated with six hand-crafted features, and this combined
feature set was utilized for the classification of MVI. In the third
stage, the authors introduced modifications to the Graph Convolutional
Neural Network (GCNN). Specifically, they incorporated a shortcut
connection to alleviate the over-smoothing problem and added a MLP
at the network’s end. This stage aimed to generate image-level results,
where the vertices of the graph corresponded to the instances generated
in the previous stage.

Multi-class segmentation networks. Existing DL models in the
ealm of liver cancer HIA have predominantly been on binary segmen-
ation, distinguishing between cancerous and normal regions. However,
his approach has certain limitations as it constrains the diversity of
eatures that these models can learn. In contrast, multi-class segmen-
ation networks have emerged as a promising avenue to address these
imitations. These networks are capable of learning a wider array of
istological features, thereby not only bolstering their generalization
ut also furnishing invaluable pathological insights for prognostic anal-
sis. For example, Qu et al. (2023) harnessed the power of ResNet-50,
ugmented with a squeeze-and-excitation module, to undertake the
ask of classifying HCC WSIs into six distinct categories. The generated
egmentation maps enable pathologists to visually discern and analyze
he targeted tissue regions. Similarly, Liang et al. (2023) developed a
igh-generalization CNN named PaSegNet. Notably, this model trained
n the high-quality and high-diversity mate-annotation dataset (for fur-
her elaboration, refer to Section 6.2. PaSegNet exhibited exceptional
erformance across three diverse datasets, encompassing TCGA-LIHC,
AIP, and a private dataset. Importantly, this study underscored that
ven when a substantial-scale dataset is lacking, models trained on
igh-quality, diverse small-scale datasets can still exhibit remarkable
obustness and generalization capabilities.

.3.2. Weakly supervised learning
Supervised learning localization models heavily depend on an exten-

ive dataset comprising high-quality annotated images, often requiring
ixel-level labels. Nonetheless, the acquisition of such labeled im-
ges at scale presents formidable challenges. In response to this issue,
everal studies have explored the application of weakly supervised
earning-based approaches. In the subsequent sections, we will specif-
cally highlight two prominent approaches: the multi-scale attention
etwork and the weak complementary label-learning network.
The multi-scale attention network. Diao et al. (2022) exploited a

weakly-supervised multi-scale attention model, comprising two parallel
VGG-19 networks as the backbone. This model operated efficiently
with a set of weak labels, namely image-level labels, while patch
labels corresponded to the labels of large tissue regions extracted
from WSIs. As illustrated in Fig. 5(a1), this model can be treated as
a multi-resolution model due to the distinct resolutions of the two
input patches, yet maintaining the same spatial structure. The fusion
mechanism employed in this model is the attention mechanism. The
attention weights were generated by the low-resolution sub-model. The
feature maps from the high-resolution sub-model were downsampled
to match the dimensions of the low-resolution feature maps and were
then concatenated with the attention maps to yield the model’s out-
put. Combining the outcomes from the two sub-models resulted in
the final classification output. Experimental results demonstrated that
this model achieved remarkable performance in HCC tumor region
detection, with a Dice score of 0.807.

The weak complementary label-learning network. As illustrated
in Fig. 5(c), Hägele et al. (2023) discovered that the additional di-
agnostic outcome can lead to improved performance of DL models.
They utilized weak complementary labels to train their DL model
for segmenting HCC and ICC histopathological images. Weak com-
plementary labels, in this context, refer to labels that represent the
opposite diagnosis of histopathological images, such as labeling HCC
histopathological images as non-ICC, and vice versa. To guide the DL
13

model to closely approximate the ground truth classes, they introduced
a novel complementary loss function. The overall loss of their model
was formulated as a weighted combination of the cross-entropy loss and
the complementary loss. Furthermore, they incorporated an extended
focal loss (Lin et al., 2017) by introducing a multiplicative factor
into the loss calculation. Their approach involved training a U-Net
architecture with a ResNet-18 backbone using a subset of pixel-level
labeled images alongside other complementary labeled images. The
experimental results showcased the strong performance of the model
trained on complementary labeled images, achieving an Acc of 0.905
in case-level prediction.

4.4. Discussion

In the realm of classification tasks pertaining to liver cancer
histopathology, the utilization of CNNs has witnessed significant devel-
opment. Initially, conventional CNNs demonstrated promising perfor-
mance in early studies. However, owing to the inherent limitations in
representation learning of these traditional CNNs, subsequent research
endeavors have increasingly turned to more advanced and deeper
models, including ResNet, VGG, and DenseNet. To ease the challenge
of limited training data, the adoption of transfer learning has emerged
as a viable solution. In this approach, models pre-trained on large-scale
datasets like ImageNet are repurposed for the target dataset, facilitating
knowledge transfer. Another effective approach to mitigate the lack
of high-quality labeled data is weakly supervised learning. These MIL
models require only a set of coarse labels, namely the image-level
labels, making them particularly valuable in scenarios with limited an-
notated data. Furthermore, to augment the classification performance
of these models, several studies have introduced modifications, such as
the incorporation of attention mechanisms.

Among localization tasks, the main objective revolves around the
precise identification of lesion regions, often accomplished through the
generation of heatmaps or segmentation, along with the classification
of the target class. Multi-scale networks have emerged as the prevailing
paradigm for addressing these challenges. These networks typically
employ two or more branches dedicated to extracting both global
and local information from high-magnification and low-magnification
images, which are subsequently fused to generate the final output.
A widely recognized segmentation network used in this context is
U-Net, characterized by its encoder–decoder architecture. However,
traditional U-Net models have relatively shallow layers, prompting
several research efforts to enhance feature extraction capabilities. One
common approach involves replacing the U-Net’s encoder with deeper
networks like SE-ResNet, resulting in improved feature representation.
Moreover, it is worth noting that the landscape of localization networks
has seen the incorporation of various innovative strategies. These in-
clude multi-task ensemble learning-based networks, three-stage cascade
networks, and notable weakly supervised networks, each contributing
to the diversity of approaches employed in liver cancer histopathology
studies.

While existing models have demonstrated commendable perfor-
mance, they are not without their limitations. The foremost challenge
is the insufficiency of training datasets, particularly those with high-
quality labels, such as patch-level or pixel-level annotations. Further-
more, these datasets are often derived from single-source origins, which
imposes constraints on the advancement of DL models. Despite at-
tempts to address this limitation through various methods, including
the utilization of learning-efficient algorithms like transfer learning or
weakly supervised learning, as well as data augmentation techniques
aimed at expanding the pool of available images, the resulting im-
provements in model performance have been somewhat limited (Wang
et al., 2021c). Consequently, there is a pressing need to amass a more
extensive collection of histopathological images sourced from multiple
institutions to bolster the training of DL models in future endeavors.
The second limitation involves the lack of interpretability. The majority

of existing DL models employed in liver cancer histopathology are



Engineering Applications of Artificial Intelligence 133 (2024) 108436H. Jiang et al.
often perceived as the ‘‘black box’’, rendering the underlying decision-
making processes inscrutable, especially for pathologists. Bridging this
gap is essential for the eventual integration of DL models into clinical
diagnostic workflows. Therefore, the development of interpretable,
human-centered Artificial Intelligence (AI) models holds promise for
facilitating meaningful interactions between clinical practitioners and
automated systems.

5. Deep survival learning for prognosis

5.1. Difference with diagnostic models

In Section 4, we provided an extensive overview of representative
DL models that have been applied in routine liver cancer histopathol-
ogy research. These models are mainly designed to extract and learn
histological features directly from histopathological images, enabling
them to predict specific disease types, such as HCC and ICC. Conse-
quently, they can be categorized as clinical diagnostic models (Li et al.,
2022). Prognosis entails the prediction of the likelihood of a specific
event occurring, such as patient mortality or disease recurrence, within
a predefined timeframe. This prediction is made for patients who
have undergone a period of treatment, such as liver transplantation or
resection, subsequent to their initial diagnosis. While both diagnostic
and prognostic models share certain similarities, they also exhibit
notable distinctions. One commonality lies in the dichotomized output
produced by these two types of models. As such, survival models can
effectively be regarded as a classification problem. Nonetheless, the
data required for training these models differs significantly. Diagnos-
tic models typically rely on a dataset composed only of image data
training. In contrast, the development of prognostic models necessitates
the integration of survival data, such as time-to-event information, with
histopathological images to create a training dataset.

5.2. Methodologies

In recent years, there has been a notable surge in the utilization of
DL survival models within the domain of liver cancer histopathology,
primarily for prognostic analysis and the identification of significant
biomarkers. This section provides an in-depth exploration of select
DL models that directly harness histological features derived from
histopathological images to facilitate liver cancer prognosis. One piv-
otal aspect of survival models in this context is risk stratification, which
involves the assignment of risk scores and the determination of optimal
cutoff values. Finally, three distinct approaches have emerged as main
avenues for conducting prognostic analysis in liver cancer, namely:
deep learning integrated with Cox survival models, two-stage deep
prognostic networks, and the end-to-end deep prognostic network. An
overview of these representative approaches is shown in Table 5.

Deep learning integrated with Cox survival models. This ap-
proach is centered on the utilization of DL models for categorizing
patches into distinct groups, with each group characterized by spe-
cific histologic patterns. These groups serve as covariates within the
framework of the Cox proportional hazards model, a widely em-
ployed approach for modeling individual survival outcomes. For exam-
ple, Muhammad et al. (2019) proposed an unsupervised convolutional
autoencoder-based model to subtype ICC. Their model adeptly classi-
fied WSIs into five distinct clusters, drawing upon cellular and struc-
tural morphologies. Subsequently, these five clusters were leveraged
as covariates for training five separate univariate Cox models, facil-
itating the examination of survival correlations among these diverse
histological subtypes.

In contrast to unsupervised techniques that seek to discern unknown
features within WSIs to form distinct clusters, weakly supervised mod-
els in this context are tailored to identify predefined histology features
with direct relevance to survival outcomes. For example, Qu et al.
(2022) used weakly supervised Inception-V3, trained on multi-class
annotation WSIs, to classify the patches into six categories, including
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tumor regions, normal liver regions, and portal areas, among oth- p
ers. The resulting classification maps underwent optimization through
morphological processing. Pathological signatures were subsequently
extracted from the top ten patches with the highest probability within
each category, forming a matrix that served as input for a Least
Absolute Shrinkage and Selection Operator (LASSO) Cox regression
model (Tibshirani, 1997). The histological score based on pure histo-
logical features, and the combined score taking together other clinical
markers were the outcome for further stratification.

Two-stage deep prognostic networks. Compared with the afore-
mentioned approach, DL-based survival models exhibit enhanced capa-
bilities for handling complex, non-linear data (Katzman et al., 2018).
Within this approach, the initial DL model is typically used as a
diagnostic model, with the main objective of discerning histopatho-
logical images and classifying them into specific target categories.
Subsequently, the second DL prognostic model leverages the prior
knowledge derived from the initial diagnostic model to capture re-
lational histological features, independently of other survival-related
factors. Consequently, the risk score generated by DL prognostic models
relies exclusively on pure histopathological information.

The DeepSurv network (Katzman et al., 2018) serves as a typical
Cox-based DL survival model. A recent study proposed by Qu et al.
(2023) modified the DeepSurv for analyzing pathological signatures
pertaining to six distinct tissue categories associated with HCC. This
adaptation yielded state-of-the-art prognostic performance. Other stud-
ies (Liang et al., 2023; Yamashita et al., 2021) employed a loss function
similar to the DeepSurv loss, namely the negative Cox partial log-
likelihood, for their DL prognostic models. These models also yielded
considerable prognostic performance.

Differing from the conventional approach of training a DL prog-
nostic network using individual patches, Liang et al. (2023) adopted
an innovative strategy. They harnessed an eight-dimensional macro
mode derived from the entire WSI generated through the prior clas-
sification network. These feature vectors served as input for a prognos-
tic network, implemented using ResNet-50 alongside MLP with batch
normalization layer (Xie et al., 2017), named MacroNet. This model
exhibited exceptional performance in the context of survival regression
for HCC patients, surpassing the prognostic network trained on a set
of individual patches. The core innovation of their prognostic network
is the feature extraction of global spatial distributions of eight tissue
categories of HCC, and the authors assumed that the spatial distribution
of a certain tissue type in WSIs can be correlated with the patient’s
survival.

Limited interpretability presents a fundamental challenge in the
domain of DL prognostic networks. To address this issue, several studies
have endeavored to demystify the ‘‘black box’’ nature of these net-
works, thereby augmenting the reliability of clinical decision-making.
For instance, Saillard et al. (2020) devised an interpretable-by-design
prognostic network capable of identifying pertinent tumor invasion fea-
tures associated with patient survival in the context of HCC histopatho-
logical images. More specifically, expert pathologists analyzed the 400
most predictive patches produced by the DL prognostic model, which
comprised 200 high-risk patches and 200 low-risk patches. Their anal-
ysis revealed that the presence of vascular spaces, a macro trabecular
architectural pattern, a high degree of cytological atypia, and nuclear
hyperchromasia within tumor areas exhibited significant associations
with patient survival. In another study by Liang et al. (2023), an
attribution method was adopted to bolster the interpretability of their
prognostic network. This approach generated saliency maps (Simonyan
et al., 2013) that were subsequently overlaid with segmentation maps.
The findings from this study highlighted the spatial distribution of
necrosis and the fraction of necrotic tissue significantly correlated with
patient survival. These investigations demonstrated that DL prognostic
networks possess the capacity to predict both known and underly-
ing morphological features that are closely tied to patient survival
outcomes.

The end-to-end deep prognostic network. Building upon the

rinciples of End-to-end Part Learning (EPL) introduced by Xie et al.
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Table 5
Overview of deep learning-based survival models for liver cancer prognosis.

Type Reference Application Pre-processing Dataset Result Methods, contributions, and limitations

Deep learning integrated with Cox survival models

Muhammad
et al.
(2019)

Evaluating histological
clusters for survival
prediction of ICC

Tissue extraction using
Otsu method + Patch
extraction

Private dataset: 246
cases

– (1) Proposing an unsupervised convolutional
autoencoder for ICC subtype clustering based
on similar morphologies; (2) Utilizing
univariate Cox survival models to assess the
performance of this DL model; (3) Lacking
the detailed comparative analysis with other
approaches and needing further validation on
a much broader range of patients.

Qu et al.
(2022)

Dichotomized
recurrence-related
histological score of
early-stage HCC and
the correlation between
immune
microenvironment and
histological score

Tissue extraction using
Otsu method + Patch
extraction + Data
augmentation using
geometric
transformation + Stain
standardization by
modifying the
traditional Reinhard
algorithm

Private dataset: 416
WSIs from 387 patients;
TCGA-LIHC: 154 WSIs
from 147 patients

Private dataset: C-Index
= 0.739; TCGA-LIHC:
C-Index = 0.708

(1) Employing Inception-V3 to implement
multiclass classification; (2) Applying LASSO
Cox regression for the generalization of
histological score (3) Using CAM to visualize
the importance of the local regions; (4)
Requiring further validating this prognostic
network on the external validation dataset.

Hou et al.
(2022)

Integrative
histology-genomic
multi-modality
information for survival
prediction of HCC

Patch extraction + Data
augmentation using
geometric
transformation

TCGA-LIHC: 346 cases C-Index = 0.746 (1) Utilizing pre-trained VGG-19 and K-means
to cluster patches; (2) Adopting MIL based on
generalized Siamese architecture to analyze
the patches from each category; (3) Using
Weighted Gene Co-expression Network
Analysis (WGCNA) and LASSO for the
acquisition of hub genes (4) Employing Cox
survival model receiving the risk score and
hub genes for survival analysis; (5) Lacking
analysis between gene and phenotype.

Two-stage deep prognostic networks

Saillard
et al.
(2020)

Dichotomized
survival-related risk
score for HCC

Tissue extraction using
U-Net + Patch
extraction

Private dataset: 390
WSIs from 206 tumors;
TCGA-LIHC: 342 WSIs
from 328 patients

Private dataset: C-index
= 0.78; TCGA-LIHC:
C-Index = 0.70

(1) Employing pre-trained ResNet-50 used as
feature extractor; (2) Presenting CHOWDER, a
model designed for weakly supervised
learning with inherent interpretability, and
SCHMOWDER, which incorporates a
supervised branch featuring an attention
mechanism alongside a weakly supervised
branch for prognostic analysis; (3) Requiring
further improving inherent interpretability of
this prognostic network.

Yamashita
et al.
(2021)

Dichotomized
recurrence-related risk
score for HCC

Patch extraction + Data
augmentation using
geometric
transformation

Private dataset: 198
WSIs; TCGA-LIHC

Private dataset: C-index
= 0.683; TCGA-LIHC:
C-Index = 0.724

(1) Utilizing PathCNN to differentiate
between patches classified as cancerous or
normal; (2) Incorporating a pre-trained
MobileNet-V2 as a prognostic network to
process the top 100 tumor patches with the
highest predicted probabilities, subsequently
generating the risk score; (3) Requiring
additional validation on diverse, large-scale
datasets for comprehensive verification. (4)
Absence of interpretability, hindering the
ability to gain insights into their DL model.

Liu et al.
(2022)

Dichotomized
recurrence-related risk
score for HCC

Patch extraction +
Stain normalization

Private dataset: 120
nucleus samples + 552
WSIs (surgical
resection) + 144 WSIs
(liver transplantation);
TCGA-LIHC: 302 cases

Varying (1) Adopting U-Net to capture the nuclear
architecture; (2) Employing MobileNet-V2
based on MIL as a prognostic network to
process the four-channel images, which
include segmentation masks combined with
raw images; (3) Lacking interpretability of
their DL prognostic model.

(continued on next page)
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2020), Muhammad et al. (2021) devised a novel end-to-end deep
rognostic network referred to as EPIC-Survival, bridging the gap of the
bove-mentioned two-stage deep prognostic networks. In this model,
he pre-trained ResNet-50 was used as the feature extractor. Sub-
equently, the generated feature vectors underwent an assignment
rocess into several logically constructed histology feature clusters
ased on initial global centroids. These feature vectors were subjected
o iterative reassignment, guided by local slide-level centroids. Conse-
uently, the patches from each cluster that were closest to the specific
ocal centroid were designated as part representations of the WSI. These
egmented parts of the WSI were concatenated and jointly trained
15
ith survival data, ultimately yielding the final risk score for the WSI.
dditionally, the authors presented a stratification loss to enhance the
odel’s capability for risk grouping. Experimental results underscored

he substantial performance improvement achieved by incorporating
he stratification loss, particularly in the prognosis of ICC patients.

.3. Discussion

DL models play a pivotal role in the domain of liver cancer survival
nalysis, undergoing rapid development. In the context of integrating
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Table 5 (continued).
Shi et al.
(2021)

Dichotomized
recurrence- and
survival-related risk
score for HCC

Tissue extraction
using Otsu method
+ Patch extraction
+ Stain
standardization
using CycleGAN

Private dataset:
median C-Index =
0.731; TCGA-LIHC:
median C-Index =
0.713

Private dataset:
2191 WSIs from
1029 patients;
TCGA-LIHC: 320
WSIs from 320
patients

(1) Utilizing a classification network,
specifically the Neural Conditional
Random Field (NCRF) built upon
ResNet-18 architecture for multi-class
classification; (2) Integrating Conditional
Random Field (CRF) to model the spatial
correlation of patches; (3) Implementing a
prognostic network utilizing a multi-scale
architecture based on ResNet-50; (4)
Adapted the CAM to create a Risk
Activation Mapping (RAM) for displaying
heatmaps on the patches; (5) Requiring
further validating this prognostic network
on other datasets.

Liang
et al.
(2023)

Dichotomized
recurrence- and
survival-related risk
score and novel
biomarkers
exploration for HCC

Patch extraction PAIP 2019;
TCGA-LIHC: 342
WSIs from 330
patients; private
dataset: 1182 WSIs
from 83 patients

TCGA-LIHC: C-Index
= 0.708, Survival
AUC = 0.732;
private dataset:
C-Index = 0.754,
Survival AUC =
0.796

(1) Proposing PathFinder by employing
the macro mode of WSIs to achieve
high-precision prognosis and identifies the
spatial distribution of necrosis as a
significant indicator for clinical prognosis.
(2) Providing a novel labeling method, a
mate-annotation dataset; (3) Utilizing a
classification network named PaSegNet,
which is based on ResNet-50, to acquire
the macro mode of WSIs; (4)
Implementing a prognostic network named
MacroNet, built upon ResNet-50
architecture, followed by an MLP with a
batch normalization layer. This
configuration is designed for learning the
macro mode of WSIs and generating the
risk score. (5) Utilizing attribution
methods that involve saliency maps to
verify hypotheses in the discovery of new
biomarkers; (6) The identification of novel
biomarkers necessitates the formulation of
empirical hypotheses for pathologists.

Qu et al.
(2023)

Dichotomized
recurrence-related
deep pathomics
score and immune
score for HCC

Tissue extraction
using Otsu method
+ Patch extraction
+ Data
augmentation using
geometric
transformation

Private dataset: 380
cases

Deep pathomics
score: C-Index =
0.794; immune
score: C-Index =
0.768

(1) Utilizing ResNet-50 with a
squeeze-and-excitation module as
classification network for implementing
multiclass classification; (2) Modifying
DeepSurv network as prognostic network
for analyzing the pathological signatures
of six tissue categories; (3) Incorporating
an attention mechanism to focus on
critical regions associated with the model
prediction; (4) Future endeavors should be
focused on the correlation between
pathological signatures and multi-omics
sequencing data.

The end-to-end deep prognostic network

Muham-
mad et al.
(2021)

Boosting risk
stratification for
survival and
recurrence
prediction of ICC

Patch extraction Private dataset: 265
WSIs

C-Index = 0.88 (1) Applying pre-trained ResNet-34 to
generate feature vectors of each patch.
Assigning patches to specific clusters with
respect to the histological characteristic
based on initial global centroids. Nearest
patches according to local centroids as
part representations of the WSI. (2)
Introducing a novel stratification loss,
integrated with the negative log partial
likelihood loss, aimed at improving risk
grouping in prognostic analysis; (3)
Requiring further validating this DL model
on other large-scale datasets.
deep learning with Cox survival models, DL models are frequently
utilized as diagnostic tools for distinguishing between cancerous and
normal images. However, the inherent nature of these approaches falls
short of realizing their full potential in uncovering the underlying
characteristics of DL models. DL-based prognostic networks exhibit sig-
nificant advantages, particularly in handling non-linear data. A notable
example is the DeepSurv model, surpassing many traditional survival
models. Furthermore, DL-based prognostic models can identify crit-
ical underlying characteristics that significantly influence prognostic
16

outcomes, often challenging for human observation. Nevertheless, a
major limitation of these methods is their lack of interpretability. While
numerous studies have employed diverse approaches to enhance the
interpretability of DL prognostic networks, ongoing efforts are essential
to improve transparency and dependability until they achieve clinical
acceptability. Additionally, two-stage deep prognostic networks com-
monly employ decoupling training strategies, rendering DL prognostic
models insufficiently capable of understanding histological features and
their impact on prognostic outcomes. Therefore, an end-to-end deep

prognostic network is emerging as the prevailing trend.
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6. Open issues and future trends

As elucidated in Sections 4 and 5, DL models have achieved grat-
ifying performance in the domain of liver cancer histopathology, en-
compassing both diagnostic and prognostic applications. Nevertheless,
it is imperative to acknowledge that DL models employed within this
domain are still at an incipient stage, beset by a multitude of un-
certainties on the horizon. In light of the extant DL approaches, we
have deliberated upon various pervasive challenges and delineated
viable strategies to address them. By way of outlook, we have proffered
several prospective avenues for future development.

6.1. Limited training data and high-quality labeled images

As previously highlighted, the training of a high-performance DL
model hinges upon the availability of sufficient high-quality labeled
data. Unfortunately, the dearth of such data remains a persistent chal-
lenge in the domain of liver cancer histopathology. It is worth noting,
however, that TCGA-LIHC can only furnish image-level annotations.
The PAIP dataset, while providing pixel-level labeled images, is rather
limited in scale, comprising a mere 100 histopathological images,
thereby constraining the performance potential of DL models on this
specific dataset. Unlike natural images, labeling the histopathologi-
cal image necessitates the expertise of skilled pathologists, rendering
this endeavor arduous and costly. Researchers have continually ex-
plored a range of efficacious strategies to mitigate this quandary,
encompassing the adoption of learning-efficient algorithms and the
introduction of labeling-efficient approaches. Subsequently, we system-
atically reviewed the existing approaches for alleviating this challenge
and explored several feasible countermeasures to overcome this open
problem.

Learning-efficient paradigms. Learning-efficient paradigms have
assumed prominence in liver cancer HIA. While supervised learning
serves as the prevailing approach, it indispensably demands a copious
reservoir of high-quality annotated data (Lin et al., 2021). In a con-
certed effort to alleviate the reliance on high-quality labeled images,
recent years have witnessed the proliferation of weakly supervised
learning methods. Notably, MIL has emerged as the primary approach
within the domain of weakly supervised learning, leveraging only a
set of coarsely labeled images, namely image-level labels, thereby
rendering it eminently suitable for HIA. It is imperative to underscore
that, although MIL offers an efficacious solution to mitigate the reliance
on high-quality labeled data, the training of a MIL model with high
generalization capabilities still necessitates an extensive dataset (Liang
et al., 2023; Campanella et al., 2019).

In an endeavor to circumvent the challenges posed by the scarcity of
histopathological images, researchers have explored transfer learning
approaches. This entails the utilization of a DL model that has been
pre-trained on ImageNet, subsequently fine-tuning it on the target
dataset, such as TCGA-LIHC, to expedite convergence. For instance, Sun
et al. (2019) leveraged a ResNet-50 model pre-trained on ImageNet,
utilizing the patch-level feature vector as input for the ensuing MIL
framework, responsible for selecting the most discriminative patches
and culminating in a slide-level outcome through an MLP classifier.
This learning strategy exhibited promise when applied to a small-
scale dataset derived from TCGA-LIHC. Nevertheless, it is worth noting
that most pre-trained models rely on ImageNet, a large-scale dataset
comprised of natural images, which may not be ideally suited for
precise HIA tasks.

Furthermore, the potential of unsupervised learning, semi-
supervised, and self-supervised learning remains to be further ex-
lored. An example of this is the study by Roy et al. (2021) which
arnessed an unsupervised convolutional autoencoder featuring a be-
poke reconstruction loss function to effect the segmentation of HCC
iable tumor regions. This investigation underscores the untapped util-
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ty of unsupervised learning techniques in the realm of liver cancer HIA. a
Additionally, a recent study proposed by Guo et al. (2023) leveraged
the self-supervised learning-based approach (Ciga et al., 2022) for the
precise segmentation of entire tumor areas in HCC WSIs. This ap-
proach harnessed ResNet-18 within the SimCLR framework (Chen et al.,
2020a) for contrastive learning. The chosen model served as a feature
extractor, complemented by two Transformer encoders that effec-
tively amalgamated both local and global feature information, enabling
accurate localization of whole tumor regions within the WSIs. We
anticipate that future research endeavors will introduce increasingly
learning-efficient paradigms aimed at reducing reliance on high-quality
annotations, all while preserving optimal performance levels.

On the other hand, bolstering the generalization capabilities of DL
models across diverse datasets necessitates access to a rich tapestry
of training data sourced from multiple institutions. Unfortunately, the
imperative of safeguarding privacy and upholding data confidential-
ity precludes many institutions from making their datasets publicly
available (Rieke et al., 2020). To surmount this challenge, privacy-
preserving learning, notably federated learning, presents a viable so-
lution. This learning paradigm revolves around the sharing of training
outcomes alone, as opposed to the raw training data, thereby ensuring
that privacy-sensitive data remains under the custodianship of its re-
spective owners, while DL models are trained locally. Several inspiring
studies (Lu et al., 2022; Hosseini et al., 2023) harnessed federated
learning within the domain of histopathology, albeit primarily in the
context of other cancer types. These endeavors have yielded DL models
of notable proficiency, delivering remarkable performance on specific
tasks within the field.

Labeling-efficient approaches. In addition to learning-efficient
paradigms, an alternative strategy for mitigating the constraints im-
posed by limited training data involves the development of an efficient
labeling approach. Recently, Liang et al. (2023) proposed a mate-
nnotation approach, which bridges the gap between pathological
nnotations and the training requisites of DL models. To diversify the
orphological features learned by DL models across various classes

e.g., tumor, normal, fibrosis, steatosis, etc.) while addressing data
mbalances, they initially employed rectangular boxes to encompass
he target tissue regions. Subsequently, they selectively extracted only
00 patches each from the tumor and normal regions, recognizing
he larger proportion of these two tissue types relative to others and
iming to achieve data balance. The remaining tissue classes were
erived from full patches. Random sampling techniques were then
arnessed to assemble the ultimate balanced meta-annotation training
ataset. Although this dataset is relatively modest in size, the DL model
rained on it exhibited exceptional performance, benefitting from the
igh-quality and diverse labeled images. However, it is worth noting
hat this annotation method still hinges on the expertise of senior
athologists, incurring substantial costs for research endeavors in the
ield. Hopefully, the future will witness the exploration of more efficient
abeling methods.

.2. Poor generalization and robustness

Presently, the majority of existing DL models have demonstrated
oteworthy performance within their specific in-house datasets, with
ome even surpassing the diagnostic capabilities of certain patholo-
ists within clinical contexts (Kiani et al., 2020; Diao et al., 2022).
owever, their performance may falter when transitioning to real-
orld clinical applications. This discrepancy arises from the inherent
eterogeneity among histopathological images originating from diverse
ources (Marini et al., 2021). Furthermore, WSIs from distinct patients
xhibit varying features due to differences in staining procedures and
maging protocols, thus presenting a formidable challenge in HIA for
he development of robust and generalized models (Chen et al., 2017b).
hese challenges bring the hurdle for the improvement of DL models.
n the subsequent discussion, we explore several viable strategies to

ddress these challenges, along with advanced methodologies that hold
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the potential to advance the development of robust and generalized DL
models.

Domain adaptation. The presence of color inconsistencies among
datasets collected from multiple centers poses a significant challenge
in liver cancer histopathology research. While some studies have inte-
grated stain normalization techniques into their pre-processing
pipelines, the resulting improvements in model performance have been
limited (Sun et al., 2019). An effective strategy to address this issue
is domain adaptation, which involves transferring knowledge from
a source dataset to a target dataset with the aim of enhancing the
generalization capabilities of DL models. This approach is particularly
advantageous in alleviating the inherent heterogeneity in the feature
distribution of WSIs across datasets originating from various institu-
tions. Although the application of domain adaptation in liver cancer
histopathology studies is still relatively unexplored, it holds substantial
promise. Several noteworthy studies (Ren et al., 2018; Alirezazadeh
et al., 2018; Ren et al., 2019) have paved the way for the utilization of
domain adaptation techniques in the field of histopathology.

Multi-modal feature fusion. The integration of complementary
information with histopathological images for training DL models holds
the potential to enhance clinical diagnostic and prognostic capabili-
ties. This strategy can be effectively realized through multi-modal ap-
proaches, which have found application in the field of histopathology.
For example, Hou et al. (2022) combined liver cancer histopathological
images with mRNA expression data to predict patient survival. They
utilized deep CNNs to generate risk scores for each WSI, followed
by the application of Weighted Gene Co-expression Network Analysis
(WGCNA) and LASSO for the identification and selection of hub genes.
Subsequently, the multi-modal fusion features were incorporated into
a Cox survival model. In the context of liver cancer histopathology
studies, there remains a need for further exploration and development
of more effective multi-modal approaches.

Foundation models. Recently, a new wave of research has been
sparked by foundation models such as ChatGPT, CLIP (Radford et al.,
2021), and SAM (Kirillov et al., 2023), garnering increased attention in
various domains. Among liver cancer HIA, there is a need for further
exploration of the capabilities of these foundation models. For example,
CLIP, an innovative zero-learning algorithm, holds substantial promise
for image classification, and its potential application in liver cancer
HIA warrants investigation. Furthermore, a study conducted by Huang
et al. (2023) has highlighted the remarkable performance of SAM
in diverse medical image segmentation tasks, including histopathol-
ogy. More recently, Ma and Wang (2023) introduced MedSAM, a
universal foundation model tailored for medical image segmentation,
which demonstrated superior performance across multiple medical im-
age domains when compared to SAM. Inspired by these two versatile
segmentation foundation models, future research endeavors can delve
into their application in the realm of liver cancer WSI segmentation.
Additionally, GMAI (Moor et al., 2023) a foundation model specifically
designed for medical applications, presents a notable development.
GMAI possesses the capability to seamlessly integrate multi-modal fea-
tures encompassing medical images, textual data, experimental reports,
and more, enabling the generation of accurate clinical decisions. As a
prospective avenue, foundation models hold tremendous potential, and
future investigations can explore their integration into liver cancer HIA,
ushering in new horizons for this field.

Adversarial attacks. Adversarial attacks with imperceptible pertur-
bations pose a significant concern for DL models in histopathology,
as they can lead to erroneous diagnoses. This issue not only raises
potential safety hazards but also hinders the deployment of DL models
in clinical settings. Ma et al. (2021) has documented instances of
adversarial attacks in various medical scenarios, including Chest X-
ray, Fundoscopy, and Dermoscopy, highlighting the vulnerability of
DL models in medical image analysis. Interestingly, these adversarial
attacks were found to be more easily detectable in medical images
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than in natural images. While the presence of adversarial attacks in the c
domain of liver cancer histopathology remains relatively unexplored,
it represents an area where misleading features, such as those related
to cancer sub-types, could be crafted to deceive and evaluate the
robustness of DL models. Beyond the detection of adversarial exam-
ples, several defense methods to prevent adversarial attacks, such as
adversarial training (Wang and Zhang, 2019; Wang et al., 2021b)
and the regularization method (Ross and Doshi-Velez, 2018), may be
also developed for liver cancer histopathology. These advancements in
adversarial attack detection and defense methods are vital for ensur-
ing the reliability and safety of DL-based diagnostic tools in clinical
practice.

6.3. Lack of interpretability

A pivotal challenge inherent to DL models lies in their characteri-
zation as the ‘‘black box’’ (Van der Velden et al., 2022). This concern
holds particular significance within the prognostic models, where the
internal decision-making process remains shrouded in obscurity from
the perspective of pathologists. Consequently, instilling trust among
clinical practitioners regarding the relevance of predicted outcomes to
patient survival proves to be a formidable task. It is worth noting that
this issue may bear less weight in the context of clinical diagnostic mod-
els, as pathologists possess the visual means to inspect lesion regions
and independently arrive at conclusive results. Within the extensive
literature we have surveyed, a spectrum of viable countermeasures
has been explored to address this challenge. These countermeasures
predominantly pertain to the deployment of visualization techniques,
intended to bolster the interpretability of DL models. Additionally,
prospective avenues for enhancing interpretability through inspiring
approaches have been postulated and are elucidated as follows.

Class activation maps. The concept behind CAMs revolves around
the visualization of feature maps derived from the last convolutional
layer. This visualization technique allows for the observation of CNNs
as they focus on discerning regions that hold greater discriminative
value for specific target classes. For instance, Kiani et al. (2020) in-
corporated CAM into their DL diagnostic model, assisting pathologists
in making conclusive clinical decisions. Furthermore, in the context
of prognostic models, Shi et al. (2021) introduced a modification of
CAMs known as Risk Activation Mapping (RAM) to accentuate histo-
logical ROIs linked to patients’ survival. However, the drawback of
CAM is that there is a need to modify the structure of CNNs and to
retrain the CNN when using it. To address these limitations, more
efficient CAM techniques such as Grad-CAM (Selvaraju et al., 2017)
and Grad-CAM++ (Chattopadhay et al., 2018) hold potential for further
exploration.

Attribution methods. The implementation of attribution methods
is various. As a reference, Deng et al. (2023) have systematically cat-
egorized 14 attribution methods, encompassing gradient-based, back-
propagation, and perturbation-based techniques. For instance, Liang
et al. (2023) employed saliency maps generated by computing gradients
of the loss function for risk score with respect to input pixels. They
overlaid these maps with segmentation maps, allowing them to validate
hypotheses and identify new biomarkers associated with the prognosis
of HCC patients based on histopathological images. Despite the exis-
tence of numerous attribution methods offering diverse perspectives,
there remains a lack of a unified conceptual framework to guide their
application. Within the domain of liver cancer histopathology research,
there is a need for further exploration and investigation into various
attribution maps and their potential contributions to the field.

Non-attribution methods. Attribution methods traditionally center
n calculating the confidence score for each pixel as a means of
xplaining image classification, providing localized insights into model
ecision-making. However, these methods tend to operate at low-level
onceptual levels that are less intuitive for human comprehension. In

ontrast, the Testing with Concept Activation Vectors (TCAV) approach,
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introduced by Kim et al. (2018), offers a distinct advantage by pro-
viding high-level concepts that facilitate a deeper understanding of DL
models from a human perspective. TCAV generates a global explanation
of DL models using concepts that are readily interpretable by humans.
For example, in the context of liver cancer histopathology, TCAV
can leverage Concept Activation Vectors (CAVs) to establish concepts
related to specific morphological characteristics associated with the
survival of liver cancer patients. It then quantifies the sensitivity of
these concepts within the DL model. In future research within the field
of liver cancer histopathology, TCAV has the potential to significantly
enhance model transparency and enable precise quantification of the
contributions made by particular histological features.

6.4. Cancer subtyping and multi-class classification

Liver cancer histopathology classification predominantly relies on
DL models to differentiate image patches or WSIs as benign or ma-
lignant. However, to enhance the precision of treatment planning by
assisting pathologists in distinguishing the degree of malignancy, it
is imperative to extract more refined and fine-grained features. For
instance, liver cancer can be categorized into three distinct malignant
degrees: poorly-differentiated, moderately-differentiated, and highly-
differentiated, where high differentiation closely resembles normal tis-
sue cells and low differentiation approaches malignancy with a higher
degree of severity (Chen et al., 2022a; Dong et al., 2022). Addi-
tionally, Aatresh et al. (2021) have proposed a DL histological grad-
ing system for HCC, classifying it into three sub-types: low sub-type,
medium sub-type, and high sub-type, in accordance with the Edmond-
son and Steiner’s standard (Edmondson and Steiner, 1954). While
these studies have initiated the exploration of cancer subtyping, there
remains ample room for further investigation in this domain. Future
research efforts can delve into various aspects of cancer subtyping,
including the intra-specific diversity within early and advanced cancer
subtypes, as well as the differentiation of HCC or ICC from com-
bined hepatocellular-cholangiocarcinoma WSIs within the context of
liver cancer histopathology. Fascinatingly, a recent study by Calderaro
et al. (2023) utilized a self-supervised DL model to reclassify com-
bined hepatocellular-cholangiocarcinoma samples into HCC and ICC,
achieving remarkable performance.

Additionally, the trajectory of future research may increasingly
gravitate towards more complex multi-class classification scenarios.
For example, Liang et al. (2023) engineered a high-performance CNN
capable of classifying seven distinct tissue types in HCC: tumor, nor-
mal, fibrosis, inflammation, necrosis, bile duct reaction, and steatosis.
This accomplishment was made possible by leveraging a meticulously
curated high-quality and diverse mate-annotation dataset, enabling
the model to acquire a more comprehensive understanding of mor-
phological features. The incorporation of multi-class classification and
segmentation tasks within DL models holds significant promise. Such
endeavors are poised to provide valuable diagnostic and prognostic
insights that can greatly enhance patient treatment strategies and offer
enhanced support to clinical practitioners.

6.5. Translating AI models towards to clinical setting

While current DL models have demonstrated impressive capabilities
in liver cancer HIA, often achieving proficiency comparable to expe-
rienced pathologists within their respective in-house datasets (Chen
et al., 2020b), their practical clinical deployment remains a challenging
endeavor. The translation of these AI models into real clinical appli-
cations necessitates further exploration and validation. Many studies
primarily emphasize the performance of their models within specific
datasets, often relying on fixed evaluation metrics such as Acc and AUC
for classification models, and IOU and Dice for localization models.
However, these models disengaged from the real clinical setting, which
lacks trustworthy clinical applicability.
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The initial investigation conducted (Kiani et al., 2020) was un-
dertaken to assess the impact of DL models when employed as aids
to pathologists in real clinical scenarios, specifically in distinguishing
between HCC and ICC image patches. In their experimental design,
they assembled a cohort of 11 pathologists, categorizing them into
four distinct groups based on their levels of expertise, comprising
three GI pathologists, three non-GI subspecialty pathologists, three
anatomic pathology trainees, and two pathologists with a non-specific
specialization. To evaluate the interactive effect on diagnostic accuracy,
the authors constructed a mixed-effect multivariate logistic regression
model, considering various factors such as the pathologists’ experi-
ence levels, tumor differentiation grades, and whether they received
assistance from DL models during the diagnosis process. The findings
derived from their study revealed a dual impact of DL models on
the diagnostic process: correct model predictions positively influenced
diagnostic accuracy, whereas incorrect model predictions exerted a
negative impact, sometimes resulting in diagnostic accuracy inferior
to that achieved without DL model assistance. This pioneering study
serves as a significant milestone in demonstrating the potential transla-
tion of AI models into clinical settings. It is hoped that future research
endeavors will focus on evaluating the complementary role of DL mod-
els in aiding pathologists within the clinical context, rather than simply
assessing their performance on in-house datasets. Such investigations
can provide valuable insights into the practical utility of AI assistance
in real-world medical diagnoses.

In summary, CADs based on DL techniques in the domain of liver
cancer histopathology have witnessed rapid advancements. While en-
countering various technical challenges and potential pitfalls, CAD
systems rooted in DL methods continue to exhibit significant promise.
Given the insights discussed above, the realization of this potential
relies on researchers devising increasingly effective strategies to sur-
mount these challenges and create high-performance DL models de-
signed to better collaborate with human experts. Such advancements
hold the potential to gain acceptance among clinicians and address
concerns related to automation bias (Skitka et al., 1999; Schemmer
et al., 2022), thus fostering the adoption of CAD systems founded on DL
techniques. The principal limitation of this survey lies in our endeavor
to encompass a wide spectrum of methodologies to generalize the
methods employed in this domain comprehensively. This work may in-
advertently overlook some valuable contributions due to the extensive
studies conducted in this field. Consequently, we are steadfast in our
commitment to focusing on this domain and conducting enlightening
research to advance AI in digital pathology.

7. Conclusion

In this survey, we have provided a comprehensive overview of the
evolution of CAD systems utilizing DL models within the domain of
liver cancer HIA. Within these approaches, we have identified and de-
lineated two primary applications, namely diagnosis and prognosis. To
facilitate readers’ understanding of the research landscape concerning
DL techniques in liver cancer histology, we have offered a structured
taxonomy. Within the realm of diagnosis, we have highlighted the
utilization of supervised learning and weakly supervised learning tech-
niques for a diverse array of liver cancer histopathology tasks, including
disease classification and lesion localization. Moreover, we have ex-
plored the rapid advancements in DL survival models for liver cancer
prognosis, presenting an in-depth analysis of three distinct implementa-
tion approaches. Finally, our survey has discussed various outstanding
challenges and proposed viable strategies to mitigate them while out-
lining potential future trends. As a valuable reference, our work has
showcased numerous DL models applied in liver cancer histopathology.
We anticipate that the insights provided herein will serve as a guide for
future research endeavors, inspiring the development of increasingly
efficient approaches in the field of computational histopathology for
liver cancer and other cancer types. Future work will explore studies
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encompassing other cancer types, expanding beyond the scope of liver
cancer HIA. We firmly believe that the cross-application of these ap-
proaches across various cancer types will significantly contribute to the
advancement of AI in digital pathology.

CRediT authorship contribution statement

Haoyang Jiang: Conceptualization, Data curation, Investigation,
Methodology, Validation, Visualization, Writing – original draft.
Yimin Yin: Funding acquisition, Project administration, Supervision.
Jinghua Zhang: Conceptualization, Data curation, Formal analysis,
Funding acquisition, Investigation, Methodology, Project administra-
tion, Supervision, Validation, Visualization, Writing – original draft,
Writing – review & editing. Wanxia Deng: Formal analysis, Funding
acquisition, Methodology, Supervision, Writing – review & editing.
Chen Li: Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China under Grant 62306323, the China Scholarship Council
under Grant 202206110005, and the ‘‘Scientific Research Project of
Education Department of Hunan Province’’ (No. 21C0839).

References

Aatresh, A.A., Alabhya, K., Lal, S., Kini, J., Saxena, P.P., 2021. LiverNet: efficient
and robust deep learning model for automatic diagnosis of sub-types of liver
hepatocellular carcinoma cancer from H&E stained liver histopathology images.
Int. J. Comput. Assist. Radiol. Surg. 16, 1549–1563.

Alirezazadeh, P., Hejrati, B., Monsef-Esfahani, A., Fathi, A., 2018. Representation
learning-based unsupervised domain adaptation for classification of breast cancer
histopathology images. Biocybern. Biomed. Eng. 38 (3), 671–683.

BenTaieb, A., Hamarneh, G., 2017. Adversarial stain transfer for histopathology image
analysis. IEEE Trans. Med. Imaging 37 (3), 792–802.

Blanche, P., Kattan, M.W., Gerds, T.A., 2019. The c-index is not proper for the
evaluation of-year predicted risks. Biostatistics 20 (2), 347–357.

Calderaro, J., Ghaffari Laleh, N., Zeng, Q., Maille, P., Favre, L., Pujals, A., Klein, C.,
Bazille, C., Heij, L.R., Uguen, A., et al., 2023. Deep learning-based phenotyping
reclassifies combined hepatocellular-cholangiocarcinoma. Nat. Commun. 14 (1),
8290.

Calderaro, J., Kather, J.N., 2021. Artificial intelligence-based pathology for
gastrointestinal and hepatobiliary cancers. Gut 70 (6), 1183–1193.

Calderaro, J., Seraphin, T.P., Luedde, T., Simon, T.G., 2022. Artificial intelligence for
the prevention and clinical management of hepatocellular carcinoma. J. Hepatol.
76 (6), 1348–1361.

Campanella, G., Hanna, M.G., Geneslaw, L., Miraflor, A., Werneck Krauss Silva, V.,
Busam, K.J., Brogi, E., Reuter, V.E., Klimstra, D.S., Fuchs, T.J., 2019. Clinical-
grade computational pathology using weakly supervised deep learning on whole
slide images. Nat. Med. 25 (8), 1301–1309.

Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N., 2018. Grad-cam++:
Generalized gradient-based visual explanations for deep convolutional networks. In:
2018 IEEE Winter Conference on Applications of Computer Vision. WACV, IEEE,
pp. 839–847.

Chaurasia, A., Culurciello, E., 2017. Linknet: Exploiting encoder representations for
efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image
Processing. VCIP, IEEE, pp. 1–4.

Chen, C., Chen, C., Ma, M., Ma, X., Lv, X., Dong, X., Yan, Z., Zhu, M., Chen, J., 2022a.
Classification of multi-differentiated liver cancer pathological images based on deep
learning attention mechanism. BMC Med. Inform. Decis. Mak. 22 (1), 1–13.

Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020a. A simple framework for
contrastive learning of visual representations. In: ICML. PMLR, pp. 1597–1607.
20
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2017a. Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40 (4), 834–848.

Chen, H., Qi, X., Yu, L., Dou, Q., Qin, J., Heng, P.-A., 2017b. DCAN: Deep contour-aware
networks for object instance segmentation from histology images. Med. Image Anal.
36, 135–146.

Chen, X., Wang, X., Zhang, K., Fung, K.-M., Thai, T.C., Moore, K., Mannel, R.S.,
Liu, H., Zheng, B., Qiu, Y., 2022b. Recent advances and clinical applications of
deep learning in medical image analysis. Med. Image Anal. 102444.

Chen, H., Wang, K., Zhu, Y., Yan, J., Ji, Y., Li, J., Xie, D., Huang, J., Cheng, S., Yao, J.,
2021. From pixel to whole slide: automatic detection of microvascular invasion
in hepatocellular carcinoma on histopathological image via cascaded networks.
In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021:
24th International Conference, Strasbourg, France, September 27–October 1, 2021,
Proceedings, Part VIII 24. Springer, pp. 196–205.

Chen, M., Zhang, B., Topatana, W., Cao, J., Zhu, H., Juengpanich, S., Mao, Q., Yu, H.,
Cai, X., 2020b. Classification and mutation prediction based on histopathology h&e
images in liver cancer using deep learning. NPJ Precis. Oncol. 4 (1), 1–7.

Chhikara, B.S., Parang, K., 2023. Global cancer statistics 2022: the trends projection
analysis. Chem. Biol. Lett. 10 (1), 451.

Ciga, O., Xu, T., Martel, A.L., 2022. Self supervised contrastive learning for digital
histopathology. Mach. Learn. Appl. 7, 100198.

Courtiol, P., Tramel, E.W., Sanselme, M., Wainrib, G., 2018. Classification and dis-
ease localization in histopathology using only global labels: A weakly-supervised
approach. arXiv preprint arXiv:1802.02212.

Cui, Y., Zhang, G., Liu, Z., Xiong, Z., Hu, J., 2019. A deep learning algorithm for
one-step contour aware nuclei segmentation of histopathology images. Med. Biol.
Eng. Comput. 57, 2027–2043.

Das, K., Conjeti, S., Chatterjee, J., Sheet, D., 2020. Detection of breast cancer from
whole slide histopathological images using deep multiple instance CNN. IEEE Access
8, 213502–213511.

Deng, H., Zou, N., Du, M., Chen, W., Feng, G., Yang, Z., Li, Z., Zhang, Q., 2023.
Understanding and unifying fourteen attribution methods with taylor interactions.
arXiv preprint arXiv:2303.01506.

Diao, S., Tian, Y., Hu, W., Hou, J., Lambo, R., Zhang, Z., Xie, Y., Nie, X., Zhang, F.,
Racoceanu, D., et al., 2022. Weakly supervised framework for cancer region
detection of hepatocellular carcinoma in whole-slide pathologic images based on
multiscale attention convolutional neural network. Am. J. Pathol. 192 (3), 553–563.

Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T., 1997. Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89 (1–2), 31–71.

Dong, X., Li, M., Zhou, P., Deng, X., Li, S., Zhao, X., Wu, Y., Qin, J., Guo, W., 2022.
Fusing pre-trained convolutional neural networks features for multi-differentiated
subtypes of liver cancer on histopathological images. BMC Med. Inform. Decis. Mak.
22 (1), 1–27.

Edmondson, H.A., Steiner, P.E., 1954. Primary carcinoma of the liver. A study of 100
cases among 48,900 necropsies. Cancer 7 (3), 462–503.

Epstein, J.I., Egevad, L., Amin, M.B., Delahunt, B., Srigley, J.R., Humphrey, P.A., 2016.
The 2014 international society of urological pathology (ISUP) consensus conference
on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 40 (2), 244–252.

Erickson, B., Kirk, S., Lee, Y., Bathe, O., Kearns, M., Gerdes, C., Rieger-Christ, K., Lem-
merman, J., 2016. Radiology data from the cancer genome atlas liver hepatocellular
carcinoma [TCGA-LIHC] collection. Cancer Imag. Arch 10, K9.

Feng, Y., Hafiane, A., Laurent, H., 2021. A deep learning based multiscale approach to
segment the areas of interest in whole slide images. Comput. Med. Imaging Graph.
90, 101923.

Finkel, R.A., Bentley, J.L., 1974. Quad trees a data structure for retrieval on composite
keys. Acta Inform. 4, 1–9.

Goceri, E., Shah, Z.K., Layman, R., Jiang, X., Gurcan, M.N., 2016. Quantification of
liver fat: A comprehensive review. Comput. Biol. Med. 71, 174–189.

Goode, A., Gilbert, B., Harkes, J., Jukic, D., Satyanarayanan, M., 2013. OpenSlide: A
vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 4 (1),
27.

Guo, Z., Wang, Q., Müller, H., Palpanas, T., Loménie, N., Kurtz, C., 2023. A hierarchical
transformer encoder to improve entire neoplasm segmentation on whole slide
images of hepatocellular carcinoma. In: 2023 IEEE 20th International Symposium
on Biomedical Imaging. ISBI, IEEE, pp. 1–5.

Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B., 2009.
Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2, 147–171.

Hägele, M., Eschrich, J., Ruff, L., Alber, M., Schallenberg, S., Guillot, A., Roderburg, C.,
Tacke, F., Klauschen, F., 2023. Leveraging weak complementary labels to improve
semantic segmentation of hepatocellular carcinoma and cholangiocarcinoma in
H&E-stained slides. arXiv preprint arXiv:2302.01813.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition.
In: CVPR. pp. 770–778.

Hosseini, S.M., Sikaroudi, M., Babaie, M., Tizhoosh, H., 2023. Proportionally fair
hospital collaborations in federated learning of histopathology images. IEEE Trans.
Med. Imaging.

Hou, J., Jia, X., Xie, Y., Qin, W., 2022. Integrative histology-genomic analysis predicts
hepatocellular carcinoma prognosis using deep learning. Genes 13 (10), 1770.

http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb1
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb2
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb2
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb2
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb2
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb2
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb3
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb3
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb3
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb4
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb4
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb4
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb5
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb6
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb6
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb6
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb7
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb7
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb7
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb7
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb7
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb8
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb9
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb10
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb10
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb10
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb10
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb10
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb11
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb11
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb11
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb11
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb11
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb12
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb12
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb12
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb13
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb13
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb13
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb13
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb13
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb14
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb14
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb14
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb14
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb14
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb15
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb15
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb15
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb15
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb15
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb16
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb17
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb17
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb17
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb17
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb17
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb18
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb18
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb18
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb19
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb19
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb19
http://arxiv.org/abs/1802.02212
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb21
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb21
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb21
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb21
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb21
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb22
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb22
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb22
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb22
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb22
http://arxiv.org/abs/2303.01506
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb24
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb25
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb25
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb25
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb26
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb27
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb27
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb27
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb28
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb28
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb28
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb28
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb28
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb29
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb29
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb29
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb29
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb29
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb30
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb30
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb30
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb30
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb30
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb31
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb31
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb31
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb32
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb32
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb32
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb33
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb33
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb33
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb33
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb33
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb34
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb35
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb35
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb35
http://arxiv.org/abs/2302.01813
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb37
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb37
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb37
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb38
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb38
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb38
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb38
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb38
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb39
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb39
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb39


Engineering Applications of Artificial Intelligence 133 (2024) 108436H. Jiang et al.
Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H., 2017. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: CVPR. pp.
7132–7141.

Huang, W.-C., Chung, P.-C., Tsai, H.-W., Chow, N.-H., Juang, Y.-Z., Tsai, H.-H., Lin, S.-
H., Wang, C.-H., 2019. Automatic HCC detection using convolutional network
with multi-magnification input images. In: 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems. AICAS, IEEE, pp. 194–198.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected
convolutional networks. In: CVPR. pp. 4700–4708.

Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., Chen, R., Yu, J., Chen, J.,
Chen, C., et al., 2023. Segment anything model for medical images? arXiv preprint
arXiv:2304.14660.

Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y., 2018.
DeepSurv: personalized treatment recommender system using a Cox proportional
hazards deep neural network. BMC Med. Res. Methodol. 18 (1), 1–12.

Kiani, A., Uyumazturk, B., Rajpurkar, P., Wang, A., Gao, R., Jones, E., Yu, Y.,
Langlotz, C.P., Ball, R.L., Montine, T.J., et al., 2020. Impact of a deep learning
assistant on the histopathologic classification of liver cancer. NPJ Digit. Med. 3
(1), 1–8.

Kim, Y.J., Jang, H., Lee, K., Park, S., Min, S.-G., Hong, C., Park, J.H., Lee, K., Kim, J.,
Hong, W., et al., 2021. PAIP 2019: Liver cancer segmentation challenge. Med.
Image Anal. 67, 101854.

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al., 2018. Inter-
pretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). In: ICML. PMLR, pp. 2668–2677.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,
Whitehead, S., Berg, A.C., Lo, W.-Y., et al., 2023. Segment anything. arXiv preprint
arXiv:2304.02643.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2017. Imagenet classification with deep
convolutional neural networks. Commun. ACM 60 (6), 84–90.

Lal, S., Das, D., Alabhya, K., Kanfade, A., Kumar, A., Kini, J., 2021. NucleiSegNet:
robust deep learning architecture for the nuclei segmentation of liver cancer
histopathology images. Comput. Biol. Med. 128, 104075.

Li, S., Jiang, H., Pang, W., 2017. Joint multiple fully connected convolutional neu-
ral network with extreme learning machine for hepatocellular carcinoma nuclei
grading. Comput. Biol. Med. 84, 156–167.

Li, L., Li, X., Li, W., Ding, X., Zhang, Y., Chen, J., Li, W., 2022. Prognostic models for
outcome prediction in patients with advanced hepatocellular carcinoma treated by
systemic therapy: a systematic review and critical appraisal. BMC Cancer 22 (1),
750.

Li, X., Wang, W., Hu, X., Yang, J., 2019. Selective kernel networks. In: CVPR. pp.
510–519.

Liang, J., Zhang, W., Yang, J., Wu, M., Dai, Q., Yin, H., Xiao, Y., Kong, L., 2023. Deep
learning supported discovery of biomarkers for clinical prognosis of liver cancer.
Nat. Mach. Intell. 1–13.

Liao, H., Long, Y., Han, R., Wang, W., Xu, L., Liao, M., Zhang, Z., Wu, Z., Shang, X.,
Li, X., et al., 2020. Deep learning-based classification and mutation prediction from
histopathological images of hepatocellular carcinoma. Clin. Transl. Med. 10 (2).

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object
detection. In: CVPR. pp. 2980–2988.

Lin, Y.-S., Huang, P.-H., Chen, Y.-Y., 2021. Deep learning-based hepatocellular car-
cinoma histopathology image classification: accuracy versus training dataset size.
IEEE Access 9, 33144–33157.

Liu, Z., Liu, Y., Zhang, W., Hong, Y., Meng, J., Wang, J., Zheng, S., Xu, X., 2022.
Deep learning for prediction of hepatocellular carcinoma recurrence after resection
or liver transplantation: a discovery and validation study. Hepatol. Int. 16 (3),
577–589.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X., Pietikäinen, M., 2020. Deep
learning for generic object detection: A survey. Int. J. Comput. Vis. 128, 261–318.

Liu, G.-J., Wang, W., Lu, M.-D., Xie, X.-Y., Xu, H.-X., Xu, Z.-F., Chen, L.-D., Wang, Z.,
Liang, J.-Y., Huang, Y., et al., 2015. Contrast-enhanced ultrasound for the charac-
terization of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Liver
Cancer 4 (4), 241–252.

Lu, M.Y., Chen, R.J., Kong, D., Lipkova, J., Singh, R., Williamson, D.F., Chen, T.Y.,
Mahmood, F., 2022. Federated learning for computational pathology on gigapixel
whole slide images. Med. Image Anal. 76, 102298.

Lu, M.Y., Williamson, D.F., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F., 2021.
Data-efficient and weakly supervised computational pathology on whole-slide
images. Nat. Biomed. Eng. 5 (6), 555–570.

Ma, X., Niu, Y., Gu, L., Wang, Y., Zhao, Y., Bailey, J., Lu, F., 2021. Understanding
adversarial attacks on deep learning based medical image analysis systems. Pattern
Recognit. 110, 107332.

Ma, J., Wang, B., 2023. Segment anything in medical images. arXiv preprint arXiv:
2304.12306.

Malaguarnera, G., Paladina, I., Giordano, M., Malaguarnera, M., Bertino, G.,
Berretta, M., 2013. Serum markers of intrahepatic cholangiocarcinoma. Dis.
Markers 34 (4), 219–228.
21
Marini, N., Otálora, S., Müller, H., Atzori, M., 2021. Semi-supervised training of deep
convolutional neural networks with heterogeneous data and few local annotations:
An experiment on prostate histopathology image classification. Med. Image Anal.
73, 102165.

Massarweh, N.N., El-Serag, H.B., 2017. Epidemiology of hepatocellular carcinoma and
intrahepatic cholangiocarcinoma. Cancer Control 24 (3), 1073274817729245.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D., 2021.
Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach.
Intell. 44 (7), 3523–3542.

Moor, M., Banerjee, O., Abad, Z.S.H., Krumholz, H.M., Leskovec, J., Topol, E.J.,
Rajpurkar, P., 2023. Foundation models for generalist medical artificial intelligence.
Nature 616 (7956), 259–265.

Muhammad, H., Sigel, C.S., Campanella, G., Boerner, T., Pak, L.M., Büttner, S.,
IJzermans, J.N., Koerkamp, B.G., Doukas, M., Jarnagin, W.R., et al., 2019. Un-
supervised subtyping of cholangiocarcinoma using a deep clustering convolutional
autoencoder. In: Medical Image Computing and Computer Assisted Intervention–
MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17,
2019, Proceedings, Part I 22. Springer, pp. 604–612.

Muhammad, H., Xie, C., Sigel, C.S., Doukas, M., Alpert, L., Simpson, A.L., Fuchs, T.J.,
2021. EPIC-survival: End-to-end part inferred clustering for survival analysis, with
prognostic stratification boosting. In: Medical Imaging with Deep Learning.

Murtagh, F., Legendre, P., 2014. Ward’s hierarchical agglomerative clustering method:
which algorithms implement Ward’s criterion? J. Classification 31, 274–295.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9 (1), 62–66.

Qu, W.-F., Tian, M.-X., Lu, H.-W., Zhou, Y.-F., Liu, W.-R., Tang, Z., Yao, Z., Huang, R.,
Zhu, G.-Q., Jiang, X.-F., et al., 2023. Development of a deep pathomics score for
predicting hepatocellular carcinoma recurrence after liver transplantation. Hepatol.
Int. 1–15.

Qu, W.-F., Tian, M.-X., Qiu, J.-T., Guo, Y.-C., Tao, C.-Y., Liu, W.-R., Tang, Z., Qian, K.,
Wang, Z.-X., Li, X.-Y., et al., 2022. Exploring pathological signatures for predicting
the recurrence of early-stage hepatocellular carcinoma based on deep learning.
Front. Oncol. 12, 968202.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al., 2021. Learning transferable visual models
from natural language supervision. In: ICML. PMLR, pp. 8748–8763.

Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X., 2018. Adversarial domain
adaptation for classification of prostate histopathology whole-slide images. In:
Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st
International Conference, Granada, Spain, September 16-20, 2018, Proceedings,
Part II 11. Springer, pp. 201–209.

Ren, J., Hacihaliloglu, I., Singer, E.A., Foran, D.J., Qi, X., 2019. Unsupervised domain
adaptation for classification of histopathology whole-slide images. Front. Bioeng.
Biotechnol. 7, 102.

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H.R., Albarqouni, S., Bakas, S.,
Galtier, M.N., Landman, B.A., Maier-Hein, K., et al., 2020. The future of digital
health with federated learning. NPJ Digit. Med. 3 (1), 119.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, pp. 234–241.

Ross, A., Doshi-Velez, F., 2018. Improving the adversarial robustness and interpretabil-
ity of deep neural networks by regularizing their input gradients. In: AAAI. Vol.
32.

Roy, M., Kong, J., Kashyap, S., Pastore, V.P., Wang, F., Wong, K.C., Mukherjee, V.,
2021. Convolutional autoencoder based model HistoCAE for segmentation of viable
tumor regions in liver whole-slide images. Sci. Rep. 11 (1), 1–10.

Roy, A.G., Navab, N., Wachinger, C., 2018. Concurrent spatial and channel ‘squeeze &
excitation’in fully convolutional networks. In: Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2018: 21st International Conference, Granada,
Spain, September 16-20, 2018, Proceedings, Part I. Springer, pp. 421–429.

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by
back-propagating errors. Nature 323 (6088), 533–536.

Saillard, C., Schmauch, B., Laifa, O., Moarii, M., Toldo, S., Zaslavskiy, M., Pronier, E.,
Laurent, A., Amaddeo, G., Regnault, H., et al., 2020. Predicting survival after
hepatocellular carcinoma resection using deep learning on histological slides.
Hepatology 72 (6), 2000–2013.

Schemmer, M., Kühl, N., Benz, C., Satzger, G., 2022. On the influence of explainable
AI on automation bias. arXiv preprint arXiv:2204.08859.

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-
cam: Visual explanations from deep networks via gradient-based localization. In:
CVPR. pp. 618–626.

Shi, J.-Y., Wang, X., Ding, G.-Y., Dong, Z., Han, J., Guan, Z., Ma, L.-J., Zheng, Y.,
Zhang, L., Yu, G.-Z., et al., 2021. Exploring prognostic indicators in the pathological
images of hepatocellular carcinoma based on deep learning. Gut 70 (5), 951–961.

Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:
1312.6034.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb41
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb41
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb41
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb42
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb43
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb43
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb43
http://arxiv.org/abs/2304.14660
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb45
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb45
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb45
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb45
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb45
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb46
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb47
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb47
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb47
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb47
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb47
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb48
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb48
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb48
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb48
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb48
http://arxiv.org/abs/2304.02643
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb50
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb50
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb50
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb51
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb51
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb51
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb51
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb51
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb52
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb52
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb52
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb52
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb52
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb53
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb54
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb54
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb54
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb55
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb55
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb55
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb55
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb55
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb56
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb56
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb56
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb56
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb56
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb57
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb57
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb57
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb58
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb58
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb58
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb58
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb58
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb59
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb60
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb60
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb60
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb61
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb62
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb62
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb62
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb62
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb62
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb63
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb63
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb63
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb63
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb63
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb64
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb64
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb64
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb64
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb64
http://arxiv.org/abs/2304.12306
http://arxiv.org/abs/2304.12306
http://arxiv.org/abs/2304.12306
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb66
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb66
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb66
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb66
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb66
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb67
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb68
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb68
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb68
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb69
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb69
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb69
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb69
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb69
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb70
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb70
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb70
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb70
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb70
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb71
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb72
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb72
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb72
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb72
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb72
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb73
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb73
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb73
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb74
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb74
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb74
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb75
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb76
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb77
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb77
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb77
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb77
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb77
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb78
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb79
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb79
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb79
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb79
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb79
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb80
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb80
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb80
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb80
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb80
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb81
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb81
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb81
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb81
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb81
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb82
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb82
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb82
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb82
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb82
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb83
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb83
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb83
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb83
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb83
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb84
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb85
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb85
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb85
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb86
http://arxiv.org/abs/2204.08859
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb88
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb88
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb88
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb88
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb88
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb89
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb89
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb89
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb89
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb89
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1409.1556


Engineering Applications of Artificial Intelligence 133 (2024) 108436H. Jiang et al.
Singal, A.G., Pillai, A., Tiro, J., 2014. Early detection, curative treatment, and
survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis:
a meta-analysis. PLoS Med. 11 (4), e1001624.

Skitka, L.J., Mosier, K.L., Burdick, M., 1999. Does automation bias decision-making? Int.
J. Human-Comput. Stud. 51 (5), 991–1006.

Srinidhi, C.L., Ciga, O., Martel, A.L., 2021. Deep neural network models for
computational histopathology: A survey. Med. Image Anal. 67, 101813.

Steck, H., Krishnapuram, B., Dehing-Oberije, C., Lambin, P., Raykar, V.C., 2007. On
ranking in survival analysis: Bounds on the concordance index. Adv. Neural Inf.
Process. Syst. 20.

Sun, C., Xu, A., Liu, D., Xiong, Z., Zhao, F., Ding, W., 2019. Deep learning-based
classification of liver cancer histopathology images using only global labels. IEEE
J. Biomed. Health Inform. 24 (6), 1643–1651.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: CVPR.
pp. 1–9.

Tan, M., Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural
networks. In: International Conference on Machine Learning. PMLR, pp. 6105–6114.

Tan, J.W., Lee, K., Lee, K., Jeong, W.-K., 2021. Improving the accuracy of intrahepatic
cholangiocarcinoma subtype classification by hidden class detection via label
smoothing. In: 2021 IEEE 18th International Symposium on Biomedical Imaging.
ISBI, IEEE, pp. 1944–1948.

Tan, J.W., Nguyen, K.T., Lee, K., Jeong, W.-K., 2023. Multi-scale contrastive learning
with attention for histopathology image classification. In: Medical Imaging 2023:
Digital and Computational Pathology. Vol. 12471, SPIE, pp. 294–301.

Tibshirani, R., 1997. The lasso method for variable selection in the Cox model. Statist.
Med. 16 (4), 385–395.

Toğaçar, M., Özkurt, K.B., Ergen, B., Cömert, Z., 2020. BreastNet: A novel convolutional
neural network model through histopathological images for the diagnosis of breast
cancer. Physica A 545, 123592.

Van der Velden, B.H., Kuijf, H.J., Gilhuijs, K.G., Viergever, M.A., 2022. Explainable
artificial intelligence (XAI) in deep learning-based medical image analysis. Med.
Image Anal. 79, 102470.

Wang, X., Fang, Y., Yang, S., Zhu, D., Wang, M., Zhang, J., Tong, K.-y., Han, X.,
2021a. A hybrid network for automatic hepatocellular carcinoma segmentation in
H&E-stained whole slide images. Med. Image Anal. 68, 101914.

Wang, Y., Ma, X., Bailey, J., Yi, J., Zhou, B., Gu, Q., 2021b. On the convergence and
robustness of adversarial training. arXiv preprint arXiv:2112.08304.

Wang, J., Xu, Z., Pang, Z.-F., Huo, Z., Luo, J., 2021c. Tumor detection for whole slide
image of liver based on patch-based convolutional neural network. Multimedia
Tools Appl. 80, 17429–17440.

Wang, J., Zhang, H., 2019. Bilateral adversarial training: Towards fast training of more
robust models against adversarial attacks. In: CVPR. pp. 6629–6638.

Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. Cbam: Convolutional block attention
module. In: ECCV. pp. 3–19.

Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017. Aggregated residual transformations
for deep neural networks. In: CVPR. pp. 1492–1500.
22
Xie, C., Muhammad, H., Vanderbilt, C.M., Caso, R., Yarlagadda, D.V.K., Campanella, G.,
Fuchs, T.J., 2020. Beyond classification: Whole slide tissue histopathology analysis
by end-to-end part learning. In: Medical Imaging with Deep Learning. PMLR, pp.
843–856.

Xie, S., Tu, Z., 2015. Holistically-nested edge detection. In: CVPR. pp. 1395–1403.
Xu, Y., Jia, Z., Wang, L.-B., Ai, Y., Zhang, F., Lai, M., Chang, E.I., et al., 2017. Large

scale tissue histopathology image classification, segmentation, and visualization via
deep convolutional activation features. BMC Bioinform. 18 (1), 1–17.

Xu, Y., Zhu, J.-Y., Eric, I., Chang, C., Lai, M., Tu, Z., 2014. Weakly supervised
histopathology cancer image segmentation and classification. Med. Image Anal. 18
(3), 591–604.

Yamamoto, K., Imamura, H., Matsuyama, Y., Kume, Y., Ikeda, H., Norman, G.L.,
Shums, Z., Aoki, T., Hasegawa, K., Beck, Y., et al., 2010. AFP, AFP-L3, DCP, and
GP73 as markers for monitoring treatment response and recurrence and as surrogate
markers of clinicopathological variables of HCC. J. Gastroenterol. 45, 1272–1282.

Yamashita, R., Long, J., Saleem, A., Rubin, D.L., Shen, J., 2021. Deep learning predicts
postsurgical recurrence of hepatocellular carcinoma from digital histopathologic
images. Sci. Rep. 11 (1), 1–14.

Yan, J., Chen, H., Wang, K., Ji, Y., Zhu, Y., Li, J., Xie, D., Xu, Z., Huang, J.,
Cheng, S., et al., 2021. Hierarchical attention guided framework for multi-resolution
collaborative whole slide image segmentation. In: Medical Image Computing
and Computer Assisted Intervention–MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24.
Springer, pp. 153–163.

Yang, T.-L., Tsai, H.-W., Huang, W.-C., Lin, J.-C., Liao, J.-B., Chow, N.-H., Chung, P.-
C., 2022. Pathologic liver tumor detection using feature aligned multi-scale
convolutional network. Artif. Intell. Med. 125, 102244.

Zanjani, F.G., Zinger, S., Bejnordi, B.E., van der Laak, J.A., de With, P.H., 2018. Stain
normalization of histopathology images using generative adversarial networks. In:
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). IEEE,
pp. 573–577.

Zeng, Q., Klein, C., Caruso, S., Maille, P., Laleh, N.G., Sommacale, D., Laurent, A.,
Amaddeo, G., Gentien, D., Rapinat, A., et al., 2022. Artificial intelligence predicts
immune and inflammatory gene signatures directly from hepatocellular carcinoma
histology. J. Hepatol. 77 (1), 116–127.

Zhai, Z., Wang, C., Sun, Z., Cheng, S., Wang, K., 2022. Deep neural network guided by
attention mechanism for segmentation of liver pathology image. In: Proceedings of
2021 Chinese Intelligent Systems Conference: Volume III. Springer, pp. 425–435.

Zhang, H., Ren, F., Wang, Z., Rao, X., Li, L., Hao, J., Yan, R., Luo, J., Du, M., Zhang, F.,
2019. Predicting tumor mutational burden from liver cancer pathological images
using convolutional neural network. In: 2019 IEEE International Conference on
Bioinformatics and Biomedicine. BIBM, IEEE, pp. 920–925.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A., 2016. Learning deep features
for discriminative localization. In: CVPR. pp. 2921–2929.

Zhu, P., Wang, C., Sun, Z., Cheng, S., Wang, K., 2022. Segmentation of liver cancer
pathology images based on multi-scale feature fusion. In: Proceedings of 2021
Chinese Intelligent Systems Conference: Volume III. Springer, pp. 596–605.

http://refhub.elsevier.com/S0952-1976(24)00594-3/sb92
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb92
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb92
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb92
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb92
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb93
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb93
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb93
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb94
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb94
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb94
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb95
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb95
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb95
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb95
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb95
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb96
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb96
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb96
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb96
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb96
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb97
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb97
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb97
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb97
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb97
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb98
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb98
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb98
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb99
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb100
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb100
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb100
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb100
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb100
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb101
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb101
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb101
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb102
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb102
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb102
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb102
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb102
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb103
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb103
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb103
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb103
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb103
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb104
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb104
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb104
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb104
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb104
http://arxiv.org/abs/2112.08304
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb106
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb106
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb106
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb106
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb106
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb107
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb107
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb107
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb108
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb108
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb108
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb109
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb109
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb109
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb110
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb111
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb112
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb112
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb112
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb112
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb112
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb113
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb113
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb113
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb113
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb113
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb114
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb115
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb115
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb115
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb115
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb115
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb116
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb117
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb117
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb117
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb117
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb117
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb118
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb119
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb120
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb120
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb120
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb120
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb120
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb121
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb122
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb122
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb122
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb123
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb123
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb123
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb123
http://refhub.elsevier.com/S0952-1976(24)00594-3/sb123

	Deep learning for liver cancer histopathology image analysis: A comprehensive survey
	Introduction
	Overview
	The problem
	Learning paradigms
	Main challenges
	Taxonomy

	Datasets and evaluation metrics
	Datasets
	Evaluation metrics

	Deep learning for histopathology diagnosis
	Pre-processing
	Classification
	Supervised learning
	Weakly supervised learning

	Localization
	Supervised learning
	Weakly supervised learning

	Discussion

	Deep survival learning for prognosis
	Difference with diagnostic models
	Methodologies
	Discussion

	Open issues and future trends
	Limited training data and high-quality labeled images
	Poor generalization and robustness
	Lack of interpretability
	Cancer subtyping and multi-class classification
	Translating AI models towards to clinical setting

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


