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To assist researchers to identify Environmental Microorganisms (EMs) effectively, aMultiscale CNN-CRF (MSCC) framework for
the EM image segmentation is proposed in this paper. There are two parts in this framework: The first is a novel pixel-level
segmentation approach, using a newly introduced Convolutional Neural Network (CNN), namely, “mU-Net-B3”, with a dense
Conditional Random Field (CRF) postprocessing. The second is a VGG-16 based patch-level segmentation method with a novel
“buffer” strategy, which further improves the segmentation quality of the details of the EMs. In the experiment, compared with
the state-of-the-art methods on 420 EM images, the proposed MSCC method reduces the memory requirement from 355MB to
103MB, improves the overall evaluation indexes (Dice, Jaccard, Recall, Accuracy) from 85.24%, 77.42%, 82.27%, and 96.76% to
87.13%, 79.74%, 87.12%, and 96.91%, respectively, and reduces the volume overlap error from 22.58% to 20.26%. Therefore, the
MSCC method shows great potential in the EM segmentation field.

1. Introduction

Environmental pollution is an extremely serious problem in
many countries. Therefore, many methods to deal with envi-
ronmental pollution are constantly being put forward. The
methods of eliminating environmental pollution can be
divided into three major categories: chemical, physical, and
biological. The biological method is more harmless and well
efficient [1]. Environmental Microorganisms (EMs) are
microscopic organisms living in the environment, which
are natural decomposers and indicators [2]. For example,
Actinophrys can digest the organic waste in sludge and
increase the quality of freshwater. Therefore, the research
on EMs plays a significant role in the management of pollu-
tion [3]. The identification of EMs is the basic step for related
researches.

Generally, there are four traditional types of EM identifi-
cation strategies. The first one is the chemical method, which
is highly accurate but often results in secondary pollution of

chemical reagent [4]. The second strategy is the physical
method. This method also has high accuracy, but it requires
expensive equipment [4]. The third is the molecular biologi-
cal method, which distinguishes EMs by sequence analysis of
genome [5]. This strategy needs expensive equipment, plenty
of time, and professional researchers. The fourth strategy is
the morphological observation, which needs an experienced
operator to observe EMs under a microscope and give the
EM identities by their shape characteristics [1]. Hence, these
traditional methods have their respective disadvantages in
practical work.

The morphological method has the lowest cost of the
above methods, but it is laborious and tedious. Considering
that deep learning achieves good performance in many fields
of imaging processing, it can be used to make up the draw-
backs of the traditional morphological method. Thus, we
propose a full-automatic system for the EM image segmenta-
tion task, which can obtain the EM shape characteristics to
assist researchers to detect and identify EMs effectively. The
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proposed system has two parts: The first part is a novel deep
Convolutional Neural Network (CNN), namely, “mU-Net-
B3”, with a Conditional Random Field (CRF) based pixel-
level segmentation approach; the second part is a VGG-16
network [6] based patch-level segmentation method. In the
pixel-level part, high-quality segmentation results are
obtained on most EM images but lose effectiveness on some
details with under-segmentation problems in some images.

Therefore, we propose the patch-level part to assist the sys-
tem to obtain more details of EMs. Hence, our Multiscale
CNN-CRF (MSCC) segmentation system can solve the EM
image segmentation effectively.

In the pixel-level part, mU-Net-B3 with denseCRF is
used as the core step for the segmentation task, where mU-
Net-B3 is an improved U-Net. Compared with U-Net, it
effectively improves the performance of segmentation result
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Figure 1: An overview of our MSCC EM segmentation framework.
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Figure 2: The network structure of U-Net.
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and reduces the memory requirement. Because denseCRF [7]
can obtain global information between pixels in an image, it
is used as the postprocessing after mU-Net-B3, which further
improves the performance of the segmentation results. In the
patch-level part, the segmentation task is actually a binary

classification task. Because of the outstanding classification
ability of VGG-16 in ImageNet [6] and the significant perfor-
mance of transfer learning with limited training data set, we
use the limited EM training data to fine-tune the VGG-16
model pretrained by ImageNet, which provides hundreds of

(a) The 5 × 5 convolution filter (b) Two 3 × 3 convolution filter

(c) The 3 × 3 convolution filter (d) 1 × 3 and 3 × 1 convolution filter

Figure 3: The strategies used by Inception-V2 and Inception-V3 to replace the big filter.
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Figure 4: The architecture of VGG-16 network.
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object categories and millions of images [6], in our patch-
level part. This approach effectively generates good classifi-
cation results, from which we reconstruct the patch-level
segmentation results. The EM segmentation framework is
shown in Figure 1.

In Figure 1, (a) denotes the “Training Images”: The
training set contains 21 categories of EM images and their
corresponding ground truth (GT) images. We unify the
image size to 256 × 256 pixels. Considering the colour infor-
mation is inefficient in EM segmentation [8], these images

Actinophrys Noctiluca Rotifera Colpoda

Figure 5: The variety of the object sizes in EM images.
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are converted into grayscale; (b) shows the “Patch-level Train-
ing”: Images and their corresponding GT images are meshed
into patches (8 × 8 pixels). Then, the data augmentation
operation is used to balance patch data. After that, the bal-
anced data are used to fine-tune the pretrained VGG-16 to
obtain the classification model; (c) is the “Pixel-level Train-
ing”: Data augmentation is applied to make up the lack of
data. Then, the data are fed to the mU-Net-B3 to obtain the
segmentation model; (d) is “Testing Images”: The test set
only has original images. We, respectively, convert them into
grayscale images and patches for pixel-level and patch-level
tests; (e) denotes the “Pixel-level Post-processing”: The den-
seCRF is used to further improve the pixel-level segmenta-
tion results; (f) shows “Patch-level Post-processing”: The
predicted labels of patches are used to reconstruct the
patch-level segmentation results. For further optimization,
the denseCRF results are used to create the buffers to help
the patch-level results to denoise. (g) is the “Final Results”:
The denseCRF results and buffer results are combined and
plotted by different colours on the original images.

The main contributions of this paper are as follows:

(i) We propose a novel automatic approach that
segments EM images from pixel-level and patch-
level to assist EM analysis work

(ii) We propose three different strategies to optimize
the original U-Net from the perspective of the
receptive field, which well improve the segmenta-
tion performance

(iii) The proposedmU-Net-B3 not only improves the seg-
mentation performance but also reduces the memory
requirement to less than a third of that of U-Net

2. Related Works

2.1. Existing Microorganism Segmentation Methods. In this
section, related works about microorganism image segmen-
tation techniques are briefly summarized, including classical
and machine learning-based methods. For more details,
please refer to our previous survey in [9].

2.1.1. Classical Methods. Classical methods include three
subcategories, which are threshold-based methods, edge-
based methods, and region-based methods. Threshold-
based methods: The related work [10] shows a comparison
between threshold-based segmentation methods for biofilms.
The last result shows that iterative selection method is supe-
rior; in [11], different algorithms that are based on Otsu
thresholding are applied for the segmentation of floc and fil-
aments to enhance monitoring of activated sludge in waste
water treatment plants. Edge-based methods: A segmenta-
tion and classification work is introduced to identify individ-
ual microorganism from a group of overlapping (touching)
bacteria in [12]. Canny is used as the basic step of the seg-
mentation part in [12]; in [13], to be able to segment large
size images of zoo-planktons, a segmentation (based on
Active Contour) and preclassification algorithm is used after
the acquisition of images. Region-based methods: In [14], the
segmentation is performed on gray-level images using
marker controlled watershed method; in [15], after convert-
ing the colour mode and using morphological operations to
denoise, seeded region-growing watershed algorithm is
applied for segmentation.

2.1.2. Machine Learning Methods.Machine learning methods
usually have two categories: unsupervised and supervised
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Figure 7: The architecture of BLOCK-II.
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methods. Unsupervised methods: [16] evaluates clustering
and threshold segmentation techniques on tissue images
containing TB Bacilli. The final result shows that k-means
clustering (k = 3) is outstanding; In [17], a comparison
between condition random fields and region-based segmen-
tation methods is presented. The final result shows that these
two kinds of methods for microorganism segmentation have
an average recognition rate above 80%. Supervised Methods:
In [18], a segmentation system is designed to monitor the
algae in water bodies. Its main thought is image enhancement
(sharpening) applied first by using the Retinex filtering tech-
nique, then segmentation is done by using support vector
machine; in [19], a network for segmentation of Rift Valley
virus is proposed. Because of the insufficient data set, data
augmentation is used to assist U-Net, which is used for
segmentation.

2.2. Machine Learning Methods. In this section, the methods
related to our work are introduced, including U-Net [20],
Inception [21], denseCRF [7], and VGG-16 [6].

2.2.1. U-Net. U-Net is a convolutional neural network,
which is initially used to perform the task of medical image
segmentation. The architecture of U-Net is symmetrical. It
consists of a contracting path and an expansive path [20].
There are two important contributions of U-Net. The first
is the strong use of data augmentation to solve the problem
of insufficient training data. The second is its end-to-end

structure, which can help the network to retrieve the infor-
mation from the shallow layers. With the outstanding per-
formance, U-Net is widely used in the task of semantic
segmentation. The network structure of U-Net is shown in
Figure 2.

2.2.2. Inception. The original Inception, which uses filters of
different sizes (1 × 1, 3 × 3, 5 × 5), is proposed in GoogleNet
[22]. Because of the use of these filters, Inception has the
capacity to adapt objects that have various sizes in images.
However, there are also some disadvantages with the differ-
ent filters used, for instance, the increasing of parameters,
overfitting, and vanishing gradient. To reduce the negative
effects, Inception-V2 gives a novel method, which is combin-
ing two 3 × 3 convolution filters to replace one 5 × 5 convolu-
tion filter [21]. For further optimization, Inception-V3
proposes a better approach, which uses a sequence of 1 ×N
convolution filter and N × 1 convolution filter to replace N
×N convolution filter [21]. Figure 3 also shows the 3 × 3
convolution filter replaced by 1 × 3 and 3 × 1 convolution fil-
ters. This strategy reduces more parameter count. Further-
more, with more convolution filters with ReLU used, the
expressiveness is improved.

2.2.3. DenseCRF. Although CNNs can perform well on pixel-
level segmentation, there are still some details that are not
perfect enough. The main reason is it is difficult to consider
the spatial relationships between different pixels in the

Table 1: Details of mU-Net architecture with different BLOCKs.

Block
Model Filter

number
Block

Model Filter
numbermU-Net-B1 mU-Net-B2 mU-Net-B3 mU-Net-B1 mU-Net-B2 mU-Net-B3

Block 1 and
Block 9

Con2D (3,3) Con2D (3,3)
Con2D (3,1)

16
Block 2 and
Block 8

Con2D (3,3) Con2D (3,3)
Con2D (3,1)

32

Con2D (1,3) Con2D (1,3)

Con2D (5,5) Con2D (3,3)
Con2D (3,1)

Con2D (5,5) Con2D (3,3)
Con2D (3,1)

Con2D (1,3) Con2D (1,3)

Con2D (7,7) Con2D (3,3)
Con2D (3,1)

Con2D (7,7) Con2D (3,3)
Con2D (3,1)

Con2D (1,3) Con2D (1,3)

Con2D (1,1) Con2D (1,1) Con2D (1,1) Con2D (1,1) Con2D (1,1) Con2D (1,1)

Block 3 and
Block 7

Con2D (3,3) Con2D (3,3)
Con2D (3,1)

64
Block 4 and
Block 6

Con2D (3,3) Con2D (3,3)
Con2D (3,1)

128

Con2D (1,3) Con2D (1,3)

Con2D (5,5) Con2D (3,3)
Con2D (3,1)

Con2D (5,5) Con2D (3,3)
Con2D (3,1)

Con2D (1,3) Con2D (1,3)

Con2D (7,7) Con2D (3,3)
Con2D (3,1)

Con2D (7,7) Con2D (3,3)
Con2D (3,1)

Con2D (1,3) Con2D (1,3)

Con2D (1,1) Con2D (1,1) Con2D (1,1) Con2D (1,1) Con2D (1,1) Con2D (1,1)

Block 5

Con2D (3,3) Con2D (3,3)
Con2D (3,1)

256

Con2D (1,3)

Con2D (5,5) Con2D (3,3)
Con2D (3,1)

Con2D (1,3)

Con2D (7,7) Con2D (3,3)
Con2D (3,1)

Con2D (1,3)

Con2D (1,1) Con2D (1,1) Con2D (1,1)
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process of pixel-level segmentation by CNNs. However, [23]
shows that using denseCRF as postprocessing after CNNs
can capture the spatial relationships. It can improve the seg-
mentation results. In [7], the energy function of denseCRF
model is the sum of unary potential and pairwise potential,
which is shown in Eq. (1).

E xð Þ =〠
i

U xið Þ +〠
i,j
P xi, xj
� �

: ð1Þ

In Eq. (1), x is the label assignment of pixel. UðxiÞ repre-
sents the unary potential, which measures the inverse likeli-
hood of the pixel i taking the label xi, and Pðxi, xjÞ means
the pairwise potential, which measures the cost of assigning
labels xi, xjto pixels i, j simultaneously [24]. We use Eq. (2)
as unary potential, where LðxiÞ is the label assignment prob-
ability at pixel i.

U xið Þ = − log L xið Þ: ð2Þ

Figure 10: Examples of patches for patch-level training (the top row shows grayscale image patches, and the bottom row shows their
corresponding GT images).
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Figure 11: The examples of the image patches of different sizes. The yellow outlines show the regions of EMs in GT images. The red arrows
point out the image patches of different sizes. (From left to right, the EMs are Actinophrys, Epistylis, and K. Quadrala).
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Figure 12: The workflow of the patch-level postprocessing.
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The pairwise potential is defined in Eq. (3), where ∅
ðxi, xjÞ is a penalty term on the labelling [25]. As explained
in [7],∅ðxi, xjÞ is given by the Potts model. If pixel i and pixel
j have the same label, the penalty term is equal to zero, and if
not, it is equal to one.

P xi, xj
� �

=∅ xi, xj
� �

〠M

m=1ω
mð Þk mð Þ f i, f j

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:

k f i ,f jð Þ

ð3Þ

As Eq. (3) shows, each kðmÞ is the Gaussian kernel, which
depends on the feature vectors f i, f j of pixels i, j,and is

weighted by ωðmÞ. In [7], it uses contrast-sensitive two-kernel
potentials, defined in terms of the colour vectors Ii and I j
and positions pi and pj. It is shown as Eq. (4).

k f i, f j
� �

= ω1exp −
pi − py

���
���2

2σ2α
−

Ii − I j
�� ��2

2σ2β

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
appearance kernel

+ ω2exp −
pi − pj

���
���2

2σ2γ

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
smoothness kernel

:

ð4Þ

The first appearance kernel depends on both pixel posi-
tions (denoted as p) and pixel colour intensities (denoted as
I). The second smoothness kernel only depends on pixel posi-
tions. And the parameters σα, σβ, and σω control the scale of

Actinophrys Arcella Aspidisca

Codosiga Colpoda Epistylis

Euglypha Paramecium Rotifera

Vorticella Noctiluca Ceratium

Stentor Siprostomum K.Quadrala

Euglena Gymnodinium Gonyaulax

Phacus Stylonychia Synchaeta

Figure 13: The combined results of pixel-level segmentation results and patch-level segmentation results. The red and fluorescent green
masks are pixel-level and patch-level segmentation results. The yellow masks represent the overlap of pixel-level and patch-level
segmentation results. The purple outlines are the outlines of GT images.
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Gaussian kernels. The first kernel forces pixels with similar
colour and position to have similar labels, while the second
kernel only considers spatial proximity when enforcing
smoothness [23].

2.2.4. VGG-16. Simonyan et al. propose VGG-16, which not
only achieves the state-of-the-art accuracy on ILSVRC 2014
classification and localisation tasks but is also applicable to
other image recognition data sets, where they achieve excellent
performance evenwhen used as a part of relatively simple pipe-
lines [6]. The architecture of VGG-16 is shown in Figure 4.

3. Multiscale CNN-CRF Model

3.1. Pixel-Level Training. In pixel-level training, our novel
multilevel CNN-CRF framework is introduced. In our data

set, there are many objects of various sizes. As Figure 5
shows, we can easily find that the EM shapes in different
categories are completely different. Considering the current
U-Net is difficult to adapt to this situation, we propose novel
methods to optimize the adaptability of U-Net.

As the U-Net structure is shown in Figure 2, we can find
that the receptive field of U-Net is limited. To optimize the
adaptability of U-Net, the direct way is using convolution fil-
ters of different sizes, just as Inception does. We propose
BLOCK-I, which incorporates 1 × 1, 3 × 3, 5 × 5, and 7 × 7
convolution filters in parallel, as shown in Figure 6. Although
this approach can help the network to improve the adaptabil-
ity, it also makes more parameters.

Inspired by Inception-V2 [21], a 5 × 5 convolution filter
actually resembles a sequence of two 3 × 3 convolution filters.
Likewise, a 7 × 7 convolution filter can be replaced by a

Arcella Aspidisca Codosiga Colpoda

Paramecium Vorticella Noctiluca Ceratium Stentor Siprostomum

K.Quadrala Euglena Gonyaulax Phacus

Actinophrys Epistylis Euglypha

Rotifera

Gymnodinium Stylonychia Synchaeta

(a) Original Image

Actinophrys Arcella Aspidisca Codosiga Colpoda Epistylis Euglypha

Paramecium Rotifera Vorticella Noctiluca Ceratium Stentor Siprostomum

K.Quadrala Euglena Gymnodinium Gonyaulax Phacus Stylonychia Synchaeta

(b) Ground truth image

Figure 14: Examples of the images in EMDS-5. (a) shows the original EM images and (b) shows the corresponding GT images.
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sequence of three 3 × 3 convolution filters. In [26], the con-
catenate operation is used to concatenate the outputs after
the first convolution operation and the second convolution
operation with the output of the third convolution opera-
tion in a sequence of three 3 × 3 convolution operations to
obtain the result, which resembles the interaction result of
3 × 3, 5 × 5, and 7 × 7 convolution operations. Therefore,
we apply this concept to optimize BLOCK-I, and we get a
novel architecture called BLOCK-II. BLOCK-II is shown in
Figure 7. Compared with BLOCK-I, this architecture can
reduce parameters.

Although the parameters of BLOCK-II are quite less than
BLOCK-I, there is still some room for improvement in this

architecture. As we mentioned about Inception-V3, a 3 × 3
convolution filter can also be replaced by a sequence of 1 ×
3 and 3 × 1 convolution filters. We apply this concept in
BLOCK-III, which is shown in Figure 8. The experiments
show that this approach can effectively reduce the memory
requirement and achieve well-performed results.

Finally, we provide the whole architecture of our network
mU-Net in Figure 9. Because of the least memory require-
ment of BLOCK-III, we deploy BLOCK-III in mU-Net archi-
tecture in our final method. Besides, we add a batch
normalization layer [27] after each convolution layer and
convolution transpose layer. For short, mU-Net with
BLOCK-X is abbreviated as “mU-Net-BX”. The details of
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Figure 15: The loss and accuracy curves of the training process.
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mU-Net-BXs are provided in Table 1. The details of
hyperparameters used in the pixel-level training process
are provided in the following subsection: Pixel-level Imple-
mentation Details.

3.2. Patch-Level Training. In our patch-level training, we use
our data set to fine-tune the VGG-16 [6], which is pretrained
on a large-scale image data set ImageNet [28, 29].

3.2.1. Fine-Tune Pretrained VGG-16. It is proved that the use
of VGG-16 pretrained on ImageNet can be useful for classi-
fication tasks through the concept of transfer learning and
fine-tuning in [30]. In our framework, the patch-level seg-
mentation is actually a classification task.

To fine-tune the pretrained model, we mesh the training
EM images into patches of 8 × 8 pixels. The examples are
shown in Figure 10. There are two reasons for using patches
of 8 × 8 pixels. First, all the EM image sizes are converted into
256 × 256 pixels where 256 can only be divisible by 2, 4, 8, 16,
32, 64, 128, or 256. Second, the patches, which are too large
or too small, make no sense for the patch-level segmentation,
because small patches cannot obtain details of EMs and large
patches will result in poor segmentation results. We provide
some examples of patches of different sizes in the original
EM images in Figure 11. As we can see, patches of 2 × 2
and 4 × 4 pixels are too small to cover the details of EMs,
and patches of 16 × 16 pixels are too large for the images.

After that, we divide these patches into two categories:
(With Object) and (Without Object). The criterion for divid-
ing is the area of the object in each patch. If the area is more
than half of the patch, we will give the label of (With Object)
to the patch. If not, the label will be (Without Object).

Finally, we apply data augmentation to make the number
of patches in two categories balanced, and use balanced data
to train a classification model through fine-tuning the pre-
trained VGG-16. As we can see from Figure 4, the VGG-16
is pretrained by ImageNet. The pretrained model can be
downloaded from Keras [31] directly. Before fine-tuning
the pretrained VGG-16, we freeze the parameters of the pre-
trained model. After that, we use the balanced patch-level
data to fine-tune the dense layers of VGG-16. The details of
hyperparameters used in the patch-level training process
are provided in the following subsection: Patch-level Imple-
mentation Details.

3.3. Pixel-Level Postprocessing. In our pixel-level segmenta-
tion, after getting the segmentation results from mU-Net-
B3, we convert the results into binary images, where the fore-
ground is marked as 1 (white) and the background is marked
as 0 (black), and use these binary images as the initial matri-
ces of denseCRF. It can effectively obtain the global informa-
tion of images to optimize the segmentation results.

3.4. Patch-Level Postprocessing. In our patch-level segmenta-
tion, we use the predicted labels generated by VGG-16 to
reconstruct the segmentation results. To remove the useless
portions of the patch-level segmentation results, we built up
the buffers by using the pixel-level postprocessing (den-
seCRF) results. The process is shown in Figure 12. The way
to make buffers is applying dilate operation to the denseCRF
results. After that, we use these images as weight matrices to
apply to the patch-level results. Only the patch-level segmen-
tation results in the buffers are retained, and the segmenta-
tion results outside the buffers are erased. This approach
can effectively help to denoise.

3.5. Segmentation Results Fusion and Presentation. After
obtaining the segmentation results of pixel-level and patch-
level, respectively, the final segmentation results are gener-
ated by combining these two kinds of segmentation results.
For the convenience of observation, the segmentation results
of pixel-level and patch-level are plotted on the original
images in the form of masks of different colours. The masks
of pixel-level are red, the masks of patch-level are fluorescent
green, and the overlapped parts of pixel-level and patch-level
segmentation results are yellow. Examples are shown in
Figure 13.

Table 2: The definitions of evaluation metrics for image segmentation. TP (True Positive), FN (False Negative), FP (False Positive), and TN
(True Negative).

Metric Definition Metric Definition

Dice Dice =
2 × Vpred

T
Vgt

�� ��
Vpred
�� �� + Vgt

�� �� Jaccard Jaccard =
Vpred

T
Vgt

�� ��
Vpred

S
Vgt

�� ��
Recall Recall =

TP
TP + FN

Accuracy Accuracy =
TP + FN

TP + FN + FP + TN

VOE VOE = 1 −
Vpred

T
Vgt

�� ��
Vpred

S
Vgt

�� ��

Table 3: The memory requirements of U-Net and mU-Net-BXs.

Model U-Net mU-Net-B1 mU-Net-B2 mU-Net-B3

Memory
requirement

355MB 407MB 136MB 103MB

Table 4: The memory requirements of U-Net and mU-Net-BXs.

Memory
requirement

Model
U-Net mU-Net-B1 mU-Net-B2 mU-Net-B3

Training 35.76min 78.24min 28.53min 36.52min

Average
testing

0.045 s 0.134 s 0.091 s 0.148 s
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Figure 16: Continued.
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4. Experiments and Analysis

4.1. Experimental Setting

4.1.1. Image Data Set. In our work, we use Environmental
Microorganism Data Set 5th Version (EMDS-5), which is a
newly released version of EMDS series [32], containing 21
EM classes as shown in Figure 14. Each EM class contains
20 original microscopic images and their corresponding GT
images, thus the data set includes 420 scenes. Owing to the
microscopic images having multifarious sizes, we convert
all the image sizes into 256 × 256 pixels uniformly.

4.1.2. Training, Validation, and Test Data Setting. Due to the
different living conditions and habits of EMs, it is difficult to
obtain a large number of EM images for our EMDS-5 [8]. To
observe the improvements made by the optimized models, a
large amount of testing images is needed. Therefore, we ran-
domly divide each class of EMDS-5 into a training data set,
validation data set, and test data set in a ratio of 1 : 1 : 2. Fur-
thermore, because of the limitation of EMDS-5, data aug-
mentation is used in our pixel-level training. Inspired by
the strategy proposed in [19], we augment the 105 training
images with rotations by 0, 90, 180, 270 degrees, and mirror-
ing, which results in 840 images for training. In our patch-
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Figure 16: The average evaluation indexes of U-Net and mU-Net-BXs with denseCRF.
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level training, we mesh 105 training images and their corre-
sponding GT images into patches (8 × 8 pixels), and 107520
patches are obtained. These patches are divided into two cat-
egories: (With Object) and (Without Object). We find that
the numbers of patches in these two categories are inconsis-
tent. The first category (With Object) has 18575 patches,
and another category (Without Object) has 88945 patches.
To resolve this situation, we employ data augmentation to
the first category (With Object). We augment the 18575
patches in the first category (Without Object) with rotations
by 0, 90, 180, 270 degrees, and mirroring, which result in
148600 patches. Then, we randomly choose 88945 patches
to replace the data in the first category (With Object).

4.1.3. Experimental Environment. The experiment is con-
ducted by Python 3. The models are implemented using
Keras [31] framework with Tensorflow [33] as backend. In
our experiment, we use a workstation with Intel(R) Cor-
e(TM) i7-8700 CPU with 3.20GHz, 32GBRAM, and NVI-
DIA GEFORCE RTX 2080 8GB.

4.1.4. Pixel-Level Implementation Details. In our pixel-level
segmentation, the task of the segmentation is to predict the
individual pixels whether they represent a point of foreground
or background. Actually, this task can be seen as a pixel-level
binary classification problem. Hence, as the loss function of
the network, we simply take the binary cross-entropy function

Actinophrys Arcella

Aspidisca Codosiga

Colpoda Epistylis

Euglypha Paramecium

Rotifera Vorticella

Noctiluca Ceratium

Stentor Siprostomum

K.Quadrala Euglena

Gymnodinium Gonyaulax

Phacus Stylonychia

Synchaeta

Figure 17: An example of GT images and segmentation results for each category of EMs by U-Net, U-Net-B1, U-Net-B2, and U-Net-B3
(from the left to the right).
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and minimize it [26]. Besides, we use Adam optimizer with
1:5 × 10−4 learning rate in our training process. The models
are trained for 50 epochs using Adam optimizer. As the aver-
age training loss and accuracy curve of the training process is
shown in Figure 15, we can find that the loss and accuracy
curves of training and validation tend to level off after 30-35
iterations. Therefore, considering the computing performance
of the workstation, we finally set 50 epochs for training.

4.1.5. Patch-Level Implementation Details. In our patch-level
training process, we employ the pretrained VGG-16 as the
core and fine-tune the dense layers of VGG-16. As Figure 4
shows, the last layer is softmax. The categorical cross-
entropy function is the loss function of choice for softmax
output units. Besides, Adam optimizer with 1:0 × 10−4 learn-
ing rate is used in VGG-16. The pretrained model is trained
for 15 epochs.
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Figure 18: The average evaluation indexes of Otsu, Canny, Watershed, k-means, and MRF.
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4.1.6. Evaluation Metric. In our previous work [3], Recall and
Accuracy are used to measure the segmentation results.
Besides that, we employ Dice, Jaccard, and VOE (volumetric
overlap error) to evaluate the segmentation results in this
paper [34]. The definitions of these evaluation metrics are
provided in Table 2. Vpred represents the foreground that is
predicted by the model. Vgt represents the foreground in a
ground truth image. From Table 2, we can find that the
higher the values of the first four metrics (Dice, Jaccard,
Recall, and Accuracy) are, the better the segmentation results
are. On the contrary, the lower the value of the final metric
(VOE) is, the better the segmentation result is.

4.2. Evaluation of Pixel-Level Segmentation. Because the
pixel-level segmentation methods are discussed above, we
mainly introduce comparisons between U-Net [20], the

models we proposed, the existing segmentation methods
mentioned in Related Works, and the segmentation result
of our previous work [3] in this section.

4.2.1. Evaluation of Different BLOCKs. In this part, we make
comparisons between different mU-Net-BXs and U-Net on
memory requirement, time requirement, and segmentation
performance.

Memory Requirement: The memory requirements of
U-Net and mU-Net-BXs are provided in Table 3. As we
can see, the memory requirements of U-Net, mU-Net-B1,
mU-Net-B2, and mU-Net-B3 are 355MB, 407MB, 136MB,
and 103MB, respectively. Obviously, mU-Net-B3 has the
lowest memory requirement.

Time Requirement: For 840 training images and 210
testing images, the time requirements of U-Net and these
improved models, which include training and average testing

Synchaeta

Actinophrys

Euglypha Paramecium

Rotifera Vorticella

Noctiluca Ceratium

Stentor Siprostomum

Euglena

Gymnodinium Gonyaulax

Stylonychia

K.Quadralaa

Arcella

Aspidisca Codosiga

Colpoda Epistylis

Phacus

Figure 19: An example of GT images and segmentation results for each EM category generated by Otsu, Canny, Watershed, k-means, and
MRF methods (from the left to the right).
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time, are provided in Table 4. The training time of U-Net,
mU-Net-B1, mU-Net-B2, and mU-Net-B3 are 35.756
minutes, 78.235 minutes, 28.53 minutes, and 36.521 minutes,
respectively. The average testing time of U-Net, mU-Net-B1,
mU-Net-B2, and mU-Net-B3 are 0.045 seconds, 0.134 sec-
onds, 0.091 seconds, and 0.148 seconds, respectively. We
can find that all these networks have a short test time that

is less than 0.15 s, showing their feasibility in the practical
EM image segmentation task.

Segmentation Performance: As the workflow is shown in
Figure 1, the evaluation indexes of all improved models are
provided with denseCRF as the postprocessing. The overall
segmentation performance of U-Net and these improved
models are shown in Figure 16. As we can see, all the improved
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Figure 20: The average recall and overall accuracy of mU-Net-B3 with denseCRF and our previous models.
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models make better performance than U-Net. Compared
with U-Net, the average Dice values of all the improved
models are increased by more than 1.8%, and in particular,
the improvements of mU-Net-B1 and mU-Net-B2 are more
than 2%. The average Jaccard values of mU-Net-B1, mU-
Net-B2, and mU-Net-B3 make 2.89%, 2.75%, and 2.32%
improvements, respectively. Likewise, the improvements of
the average Recall values made by these improved models
are 4.98%, 4.91%, and 4.85%, respectively, and for the average
Accuracy values, the improvements of these improved
models are 0.65%, 0.34%, and 0.15%, respectively. The aver-
age VOE values of the improved models are reduced by
2.89%, 2.75%, and 2.32%, respectively.

Summary: From the above, we can find that all the
improved models make better segmentation performance
than U-Net. Compared with mU-Net-B1 and mU-Net-B2,
mU-Net-B3 has the lowest memory requirement, relatively
low time requirement, and the similar performance, so it
has a big potential in the EM image segmentation work.

After evaluating the overall performance of these methods,
we also provide the detailed indexes and segmentation result
examples of each category of EM under these methods in
Table 5 and Figure 17, respectively.

4.2.2. Comparison with Other Methods. In this part, we con-
duct some comparative experiments on the segmentation of
EM. During the experiments, we mainly adopt some repre-
sentative segmentation methods mentioned in Related
Works, including Otsu, Canny, Watershed, MRF, and k
-means. During the experiments, because the results are often
insufficient, we need some postprocessing for the results. To
show better segmentation results of these methods, we uni-
formly use the same postprocessing operations. To evaluate
the overall performance of these methods, we provide the
average evaluation indexes of these methods in Figure 18.

From Figure 18, we can find none of the methods per-
forms as well as the proposed methods. But we can find that
the recall values in Figure 18 are higher than the recall values
in Figure 16. This is because some of the segmentation results
generated by these methods have a lot of background parts
divided into the foreground. From Table 2, we can realize
that as long as the foreground in the segmentation result con-
tains the entire real foreground in GT images, the value of
recall is 1 regardless of whether the oversegmentation prob-
lem is existing or not. Therefore, we should not judge the seg-
mentation results by Recall alone.

To better observe the performance of these methods, we
provide the detailed indexes of the segmentation results of
each category of EM under these methods in Table 6. Besides,
we also provide examples of the segmentation results under
these methods in Figure 19.

4.2.3. Comparison with our Previous Work. In our previous
work [3], the EMDS-4 data set we used contains only 20 cat-
egories. The 17th category (Gymnodinium), which is used in
this paper, is excluded from our previous work. Besides, we
only use Average Recall and Overall Accuracy to evaluate
the segmentation performance in our previous work. There-
fore, we provide the evaluation indexes of the segmentation
results obtained by mU-Net-B3 with denseCRF without the
17th category. Furthermore, in our previous work, there are

Colpoda Epistylis Noctiluca Ceratium Gonyaulax Phacus Stylongchia

Figure 21: Examples for proving the validity of combining pixel-level segmentation with patch-level segmentation. From top to bottom,
images in each EM represent GT image, pixel-level segmentation result, patch-level segmentation result, and combined result, respectively.

Table 7: The number of patches in different categories under
different criteria.

Category
Criterion

0.25 0.5 0.75

(With Object) 20670 18575 16823

(Without Object) 86850 88945 90697

22 BioMed Research International



six models for segmentation: Per-pixel RF (noEdges), CRF
with Potts pairwise potentials (Potts), CRF with contrast-
sensitive Potts model (PottsCS), fully connected CRF with
Gaussian pairwise potentials (denseCRF), fully connected
CRF on segmentation results by the original DeepLab
method [23] (denseCRForg), and fully convolutional net-
work (FCN). We provide the Average Recall and Overall
Accuracy values of mU-Net-B3 with denseCRF as postpro-
cessing and our previous models in Figure 20. It can be found
from Figure 20 that compared with the previous models, the
Average Recall is improved bymore than 7% and the increase
of Overall Accuracy is by at least 1%. From that, we can real-
ize mU-Net-B3 with denseCRF we proposed in this paper
performs better than the models in our previous work.

4.3. Evaluation of Patch-Level Segmentation. Although mU-
Net-B3 with Dense CRF performs well on the segmentation
task for most categories of EM, there are still some shortages.
For example, as the results of Colpoda shown in Figure 21,
mU-Net-B3 is not able to segment the whole object, leading
to an undersegmentation result. Therefore, we use patch-
level segmentation to make up this shortage.

4.3.1. The Criterion for Assigning the Labels. In this part, we
mainly discuss the criterion for assigning the labels to the
patch in training and validation data sets and the determina-
tion of buffer size. As we mentioned above, we divide the
patches into two categories: (With Object) and (Without
Object). The criterion for assigning these two labels to the
patch is whether the area of the object is more than half of
the total area of the patch. There are two reasons for using

the half area as the criterion. The first reason is that when
we choose 0.25 area and 0.75 area as the criteria, the results
do not make much difference. This is because when we,
respectively, use these three criteria, the number of patches
in the two categories varies so little. We provide detailed
numbers of patches in the two categories under different cri-
teria in Table 7. It means that most patches that contain
objects are divided into (With Object). The second reason
is that it can show the lowest loss and the highest accuracy
on the validation data set when compared with 0.25 and
0.75 areas, respectively. The loss values of using 0.25 area,
0.5 area, and 0.75 area as the criterion are 26.74%, 26.37%,
and 27.38%, respectively. The accuracy values of using 0.25
area, 0.5 area, and 0.75 area as the criterion are 90.24%,
90.33%, and 90.12%, respectively. Besides, we provide some
segmentation results under different criteria as examples in
Figure 22.

4.3.2. The Determination of Buffer Size. From Figure 22, we
can find that the patch-level segmentation results contain a
lot of noises around the objects we need to segment. We only
want to retain the useful parts of the patch-level segmenta-
tion results and remove the useless parts. The direct way is
establishing buffers near the pixel-level segmentation results.
The challenge is how to set the size of the buffer. The solution
we propose is combining the patch-level segmentation results
under different buffer size settings with pixel-level segmenta-
tion results and comparing the combined results with GT
images to determine the size of the final buffer based on the
performance of evaluation indexes. Furthermore, we make
a comparison between the buffers of different sizes. It starts

Original image GT image Criteria = 0.25 Criteria = 0.5 Criteria = 0.75

Figure 22: Patch-level segmentation results under different criteria.
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with a buffer size of 2 pixels and gradually increases the buffer
size by 2 pixels until the buffer size is 40 pixels. After that, the
patch-level segmentation results after different buffer pro-
cessing are combined with the pixel-level segmentation

results. Finally, the combined results are compared with GT
images to obtain relevant evaluation indexes, which are
shown in Figure 23. We determine the buffer area size corre-
sponding to the intersection point of Accuracy and Recall in

0.2
0.23
0.26
0.29
0.32
0.35
0.38
0.41
0.44
0.47

0.5
0.53
0.56
0.59
0.62
0.65
0.68
0.71
0.74
0.77

0.8
0.83
0.86
0.89
0.92
0.95
0.98

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Dice
Jaccard
Recall

Accuracy
VOE

Figure 23: The evaluation indexes of the combined results under different buffers.

Actinophrys Arcella Aspidisca Codosiga Colpoda Epistylis Euglypha

Paramecium Rotifera Vorticella Noctiluca Ceratium Stentor Siprostomum

K.Quadrala Euglena Gymnodinium Gonyaulax Phacus Stylonychia Synchaeta

Figure 24: Examples of patch-level segmentation results with buffer.
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Figure 23 as the final buffer size setting. The buffer size corre-
sponding to the intersection point is 26 pixels. Besides, we
provide the patch-level segmentation results in the form of
fluorescent green masks in Figure 24.

4.4. Evaluation of Combined Segmentation Results. To
observe the advantages of combining patch-level segmenta-
tion with pixel-level segmentation better, we provide some
examples and their corresponding evaluation indexes in
Figures 21 and 25, respectively. We can find that patch-
level segmentation effectively helps to improve the shortage
of pixel-level segmentation.

4.5. Segmentation Result Fusion and Presentation. Finally, we
provide the combined results of patch-level segmentation
results and pixel-level segmentation results in Figure 13.
The yellow parts in the images are the overlapping areas of
the patch-level segmentation results (fluorescent green parts)
and pixel-level segmentation results (red parts). The purple
outline plotted on the images is the GT images.

5. Conclusion and Future Work

In this paper, we propose a multilevel segmentation method
for the EM segmentation task, which includes pixel-level seg-
mentation and patch-level segmentation.

In our pixel-level segmentation, we propose mU-Net-B3
with denseCRF for EM segmentation. It mainly uses the idea
of Inception and the use of concatenate operations to reduce
the memory requirement. Besides, it also uses denseCRF to
obtain global information to further optimize the segmenta-

tion results. The proposed method not only performs better
than U-Net but also reduces the memory requirement from
355MB to 103MB. In the evaluation of segmentation results
generated by this proposed method, the values of evaluation
indexes Dice, Jaccard, Recall, Accuracy, and VOE (volume
overlap error) are 87.13%, 79.74%, 87.12%, 96.91%, and
20.26%, respectively. Compared with U-Net, the first four
indexes are improved by 1.89%, 2.32%, 4.84%, and 0.14%,
respectively, and the last index is decreased by 2.32%.
Besides, compared with our previous methods in [3], the per-
formance of segmentation results is significantly improved,
and the details of indexes are shown in Figure 20.

Since the method used in pixel-level segmentation cannot
segment some details in the image, we use patch-level
segmentation to render assistance to improve it. In the
patch-level segmentation, we use transfer learning, which is
using our data to fine-tune the pretrained VGG-16, to per-
form the patch-level segmentation task. We can find from
Figure 13 that the patch-level segmentation can effectively
assist the pixel-level segmentation to cover more details.

In our future work, we plan to increase the amount of
data in the data set to improve the performance. Meanwhile,
we have not optimized the time requirement in pixel-level
segmentation yet, but we will adjust the relevant parameters
to reduce the time requirement.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.
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Figure 25: The evaluation indexes for combined segmentation results.
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